680 research outputs found

    Evaluation of the Mineral Element Profile of Wastes of Some Wine Grape (Vitis Vinifera L.) Varieties

    Full text link
    In this study, the level of macro and micro elements of six wine grape cultivars were determined in seeds, bagasse (skin and pulp) and pomace (seed, skin and pulp) by inductively coupled plasma mass spectrometry and atomic absorption spectroscopy after microwave digestion (ICP-AES). The levels of macro and micro elements exhibited a genotype dependent alteration and affected by the part of the berry sampled. Potassium was the predominant macro element in bagasse and pomace, varying from 6.78 g/kg dry weight in pomace (Carignane) to 21.05 g/kg dry weight in bagasse (Cabernet Sauvignon). However, the level of calcium was higher than potassium in seeds and varied between 4.95 g/kg (Kalecik karası) and 6.73 g/kg (Carignane). Seeds were also richer than the bagasse and pomace related with phosphorus, magnesium, and sulfur. Among the micro elements, Fe had the highest amount in all parts of the berries. Its content ranged from 13.9 mg/kg dry weights in bagasse of Semillon to 24.8 mg/kg dry weight in seeds of Syrah. Iron, manganese, zinc and molybdenum in seeds; copper and boron in bagasse were higher amount than the other groups analyzed. The results of this study show that all parts of the grape berries are potentially rich sources of mineral elements. So, they could be used as a food supplement to improve the nutritive value of the human diet and for some engineering processes in food industry

    A Suspended Array of Square Patch Metamaterial Absorbers for Terahertz Applications

    Get PDF
    A suspended array of square metallic patches on a thin dielectric layer is introduced as a terahertz absorber. The absorber is fabricated on a metalized substrate and the device exhibits metamaterial behavior at specific frequencies determined by the size of the patches. It is feasible to place patches with different sizes in an array formation for a broadband absorber. Design of the absorber is described using electromagnetic simulations. The absorber structure was fabricated on a silicon wafer and its characteristics were measured using a terahertz time domain spectroscope. The measured data match well the simulations indicating strong absorption peaks in a band of 0.5-2 THz

    Consciousness and the labour process in a Turkish factory

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D38843/82 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Polysulfone/Clay Nanocomposites by in situ Photoinduced Crosslinking Polymerization

    Get PDF
    Cataloged from PDF version of article.PSU/MMT nanocomposites are prepared by dispersing MMT nanolayers in a PSU matrix via in situ photoinduced crosslinking polymerization. Intercalated methacrylate-functionalized MMT and polysulfone dimethacrylate macromonomer are synthesized independently by esterification. In situ photoinduced crosslinking of the intercalated monomer and the PSU macromonomer in the silicate layers leads to nanocomposites that are formed by individually dispersing inorganic silica nanolayers in the polymer matrix. The morphology of the nanocomposites is investigated by XRD and TEM, which suggests the random dispersion of silicate layers in the PSU matrix. TGA results confirm that the thermal stability and char yield of PSU/MMT nanocomposites increases with the increase of clay loading

    Endoscopic Removal of an Unusual Foreign Body Causing Gastrointestinal Bleeding

    Get PDF
    Foreign body ingestion is a condition more common in the pediatric population than in adults. In adults, although foreign body ingestion can be well tolerated, approximately 10-20% of patients require endoscopic intervention. Delayed diagnosis and unremoved foreign bodies can cause serious and fatal complications including perforation, fistula and gastrointestinal bleeding. Here we report a patient with bleeding duodenal ulcer thought to be initiated by a large foreign body

    The RFOFO Ionization Cooling Ring for Muons

    Full text link
    Practical ionization cooling rings could lead to lower cost or improved performance in neutrino factory or muon collider designs. The ring modeled here uses realistic three-dimensional fields. The performance of the ring compares favorably with the linear cooling channel used in the second US Neutrino Factory Study. The normalized 6D emittance of an ideal ring is decreased by a factor of approximately 240, compared with a factor of only 15 for the linear channel. We also examine such \textit{real-world} effects as windows on the absorbers and rf cavities and leaving empty lattice cells for injection and extraction. For realistic conditions the ring decreases the normalized 6D emittance by a factor of 49.Comment: 27 pages, 18 figures and 5 tables. Submitted to Phys. Rev. ST-A
    • …
    corecore