42 research outputs found

    High energy parton-parton amplitudes from lattice QCD and the stochastic vacuum model

    Get PDF
    Making use of the gluon gauge-invariant two-point correlation function, recently determined by numerical simulation on the lattice in the quenched approximation and the stochastic vacuum model, we calculate the elementary (parton-parton) amplitudes in both impact-parameter and momentum transfer spaces. The results are compared with those obtained from the Kr\"{a}mer and Dosch ansatz for the correlators. Our main conclusion is that the divergences in the correlations functions suggested by the lattice calculations do not affect substantially the elementary amplitudes. Phenomenological and semiempirical information presently available on elementary amplitudes is also referred to and is critically discussed in connection with some theoretical issues.Comment: Text with 11 pages in LaTeX (twocolumn form), 10 figures in PostScript (psfig.tex used). Replaced with changes, Fig.1 modified, two references added, some points clarified, various typos corrected. Version to appear in Phys. Rev.

    Changing climate both increases and decreases European river floods

    Get PDF
    Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere. These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe. Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe, because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results—arising from the most complete database of European flooding so far—suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century, suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management

    The effect of soil moisture anomalies on maize yield in Germany

    No full text
    Crop models routinely use meteorological variations to estimate crop yield. Soil moisture, however, is the primary source of water for plant growth. The aim of this study is to investigate the intraseasonal predictability of soil moisture to estimate silage maize yield in Germany. We also evaluate how approaches considering soil moisture perform compare to those using only meteorological variables. Silage maize is one of the most widely cultivated crops in Germany because it is used as a main biomass supplier for energy production in the course of the German Energiewende (energy transition). Reduced form fixed effect panel models are employed to investigate the relationships in this study. These models are estimated for each month of the growing season to gain insights into the time-varying effects of soil moisture and meteorological variables. Temperature, precipitation, and potential evapotranspiration are used as meteorological variables. Soil moisture is transformed into anomalies which provide a measure for the interannual variation within each month. The main result of this study is that soil moisture anomalies have predictive skills which vary in magnitude and direction depending on the month. For instance, dry soil moisture anomalies in August and September reduce silage maize yield more than 10 %, other factors being equal. In contrast, dry anomalies in May increase crop yield up to 7 % because absolute soil water content is higher in May compared to August due to its seasonality. With respect to the meteorological terms, models using both temperature and precipitation have higher predictability than models using only one meteorological variable. Also, models employing only temperature exhibit elevated effects
    corecore