190 research outputs found

    Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence

    Get PDF
    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence-the coincidence of sound elements in and across time-is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals ("stochastic figure-ground": SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as "figures" popping out of a stochastic "ground." Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the "figure" from the randomly varying "ground." Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the "classic" auditory system, is also involved in the early stages of auditory scene analysis.

    Auditory training changes temporal lobe connectivity in 'Wernicke's aphasia': a randomised trial

    Get PDF
    INTRODUCTION: Aphasia is one of the most disabling sequelae after stroke, occurring in 25%-40% of stroke survivors. However, there remains a lack of good evidence for the efficacy or mechanisms of speech comprehension rehabilitation. TRIAL DESIGN: This within-subjects trial tested two concurrent interventions in 20 patients with chronic aphasia with speech comprehension impairment following left hemisphere stroke: (1) phonological training using 'Earobics' software and (2) a pharmacological intervention using donepezil, an acetylcholinesterase inhibitor. Donepezil was tested in a double-blind, placebo-controlled, cross-over design using block randomisation with bias minimisation. METHODS: The primary outcome measure was speech comprehension score on the comprehensive aphasia test. Magnetoencephalography (MEG) with an established index of auditory perception, the mismatch negativity response, tested whether the therapies altered effective connectivity at the lower (primary) or higher (secondary) level of the auditory network. RESULTS: Phonological training improved speech comprehension abilities and was particularly effective for patients with severe deficits. No major adverse effects of donepezil were observed, but it had an unpredicted negative effect on speech comprehension. The MEG analysis demonstrated that phonological training increased synaptic gain in the left superior temporal gyrus (STG). Patients with more severe speech comprehension impairments also showed strengthening of bidirectional connections between the left and right STG. CONCLUSIONS: Phonological training resulted in a small but significant improvement in speech comprehension, whereas donepezil had a negative effect. The connectivity results indicated that training reshaped higher order phonological representations in the left STG and (in more severe patients) induced stronger interhemispheric transfer of information between higher levels of auditory cortex.Clinical trial registrationThis trial was registered with EudraCT (2005-004215-30, https://eudract.ema.europa.eu/) and ISRCTN (68939136, http://www.isrctn.com/)

    Brain Bases of Working Memory for Time Intervals in Rhythmic Sequences

    Get PDF
    Perception of auditory time intervals is critical for accurate comprehension of natural sounds like speech and music. However, the neural substrates and mechanisms underlying the representation of time intervals in working memory are poorly understood. In this study, we investigate the brain bases of working memory for time intervals in rhythmic sequences using functional magnetic resonance imaging. We used a novel behavioral paradigm to investigate time-interval representation in working memory as a function of the temporal jitter and memory load of the sequences containing those time intervals. Human participants were presented with a sequence of intervals and required to reproduce the duration of a particular probed interval. We found that perceptual timing areas including the cerebellum and the striatum were more or less active as a function of increasing and decreasing jitter of the intervals held in working memory respectively whilst the activity of the inferior parietal cortex is modulated as a function of memory load. Additionally, we also analyzed structural correlations between gray and white matter density and behavior and found significant correlations in the cerebellum and the striatum, mirroring the functional results. Our data demonstrate neural substrates of working memory for time intervals and suggest that the cerebellum and the striatum represent core areas for representing temporal information in working memory

    Cognitive Analysis of Complex Acoustic Scenes

    Get PDF
    Natural auditory scenes consist of a rich variety of temporally overlapping sounds that originate from multiple sources and locations and are characterized by distinct acoustic features. It is an important biological task to analyze such complex scenes and extract sounds of interest. The thesis addresses this question, also known as the “cocktail party problem” by developing an approach based on analysis of a novel stochastic signal contrary to deterministic narrowband signals used in previous work. This low-level signal, known as the Stochastic Figure-Ground (SFG) stimulus captures the spectrotemporal complexity of natural sound scenes and enables parametric control of stimulus features. In a series of experiments based on this stimulus, I have investigated specific behavioural and neural correlates of human auditory figure-ground segregation. This thesis is presented in seven sections. Chapter 1 reviews key aspects of auditory processing and existing models of auditory segregation. Chapter 2 presents the principles of the techniques used including psychophysics, modeling, functional Magnetic Resonance Imaging (fMRI) and Magnetoencephalography (MEG). Experimental work is presented in the following chapters and covers figure-ground segregation behaviour (Chapter 3), modeling of the SFG stimulus based on a temporal coherence model of auditory perceptual organization (Chapter 4), analysis of brain activity related to detection of salient targets in the SFG stimulus using fMRI (Chapter 5), and MEG respectively (Chapter 6). Finally, Chapter 7 concludes with a general discussion of the results and future directions for research. Overall, this body of work emphasizes the use of stochastic signals for auditory scene analysis and demonstrates an automatic, highly robust segregation mechanism in the auditory system that is sensitive to temporal correlations across frequency channels

    Traditional method or online teaching; which method students prefer: an observational study

    Get PDF
    Background: An unexpected global pandemic broke out in initial months of 2020 i.e., COVID-19 which drastically brought a difference in the progress of education in various institutions, especially the medical field where we study about life was also made online. This study aims to conduct a comparative analysis of students ‘opinion regarding which is the better, traditional teaching or online live teaching.Methods: Survey was conducted among two group of students, 2019 (both online and offline teaching) and 2020 (online teaching with offline practical) batches of Andhra Medical College, Visakhapatnam. A questionnaire was circulated to students regarding the class experience, interest of attending the class, learning effect and clarity of the lecture. Results: Students expressed their views that overall teaching experience and learning effect of offline methodology is superior to online approach, so the traditional offline style or the blend of online and offline modes are apt for teaching.Conclusions: The study is focused on the way in which the teaching and learning approach is delivered which is favoured by the medical practitioners, the qualitative data suggesting required modifications for further improvement in the delivering method to produce qualified medical practitioners to meet the current and imminent situations. This study suggests that a intermingled learning approach is an effective method for anatomy learning, and this approach mainly inculcates self-directed study through online learning

    A morphomertic study of dry human typical thoracic vertebral body in coastal region, Andhra Pradesh

    Get PDF
    Background: The frequent surgical interventions of the thoracic spine are more common due to a wide array of traumatic, degenerative, and neoplastic diseases. For successful surgical management of these conditions, detailed anatomical knowledge of the thoracic vertebrae is required. Previous studies in the past about morphometry of thoracic vertebrae mainly focused on pedicle diameters and their angulations. The vertebral body was not studied particularly in the coastal region, Andhra Pradesh which is the reason the present study has given importance to the morphometry of the vertebral body. Aim was to measure the various parameters of the vertebral body in typical thoracic vertebrae.Methods: 82 dry human typical thoracic vertebrae from the department of anatomy, Andhra Medical College, Visakhapatnam were studied for the various morphometric parameters.Results: The antero posterior distance of the vertebral body in typical thoracic vertebrae ranged from 14.5-27.5 mm with a mean of 21.77 mm. The vertebral body superior transverse diameter ranged from 18.1-38.7 mm with a mean of 28.22 mm. The vertebral body inferior transverse diameter ranged from 22.6-41.2 mm with a mean of 31.3 mm. The anterior height of the body ranged from 10.2-24.1 mm with a mean of 18.17 mm. The right and left lateral height of the body ranged from 9.0-24.7 mm with a mean of 18.4 mm.Conclusions: The results provide information for more accurate modelling and design of vertebral body implants and instrumentations for the Indian population

    MEG correlates of temporal regularity relevant to pitch perception in human auditory cortex

    Get PDF
    We recorded neural responses in human participants to three types of pitch-evoking regular stimuli at rates below and above the lower limit of pitch using magnetoencephalography (MEG). These bandpass filtered (1–4 kHz) stimuli were harmonic complex tones (HC), click trains (CT), and regular interval noise (RIN). Trials consisted of noise-regular-noise (NRN) or regular-noise-regular (RNR) segments in which the repetition rate (or fundamental frequency F0) was either above (250 Hz) or below (20 Hz) the lower limit of pitch. Neural activation was estimated and compared at the senor and source levels. The pitch-relevant regular stimuli (F0 = 250 Hz) were all associated with marked evoked responses at around 140 ms after noise-to-regular transitions at both sensor and source levels. In particular, greater evoked responses to pitch-relevant stimuli than pitch-irrelevant stimuli (F0 = 20 Hz) were localized along the Heschl's sulcus around 140 ms. The regularity-onset responses for RIN were much weaker than for the other types of regular stimuli (HC, CT). This effect was localized over planum temporale, planum polare, and lateral Heschl's gyrus. Importantly, the effect of pitch did not interact with the stimulus type. That is, we did not find evidence to support different responses for different types of regular stimuli from the spatiotemporal cluster of the pitch effect (∼140 ms). The current data demonstrate cortical sensitivity to temporal regularity relevant to pitch that is consistently present across different pitch-relevant stimuli in the Heschl's sulcus between Heschl's gyrus and planum temporale, both of which have been identified as a “pitch center” based on different modalities

    Strongly exchange-coupled triplet pairs in an organic semiconductor

    Get PDF
    From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly-interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin-manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes co-existing with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 µs and a spin coherence time approaching 1 µs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors.Gates-Cambridge Trust, Winton Programme for the Physics of Sustainability, Freie Universität Berlin within the Excellence Initiative of the German Research Foundation, Engineering and Physical Sciences Research Council (Grant ID: EP/G060738/1)This is the author accepted manuscript. The final version is available from Nature Publishing Group at http://dx.doi.org/10.1038/nphys3908

    Reading Front to Back: MEG Evidence for Early Feedback Effects During Word Recognition.

    Get PDF
    Magnetoencephalography studies in humans have shown word-selective activity in the left inferior frontal gyrus (IFG) approximately 130 ms after word presentation (Pammer et al. 2004; Cornelissen et al. 2009; Wheat et al. 2010). The role of this early frontal response is currently not known. We tested the hypothesis that the IFG provides top-down constraints on word recognition using dynamic causal modeling of magnetoencephalography data collected, while subjects viewed written words and false font stimuli. Subject-specific dipoles in left and right occipital, ventral occipitotemporal and frontal cortices were identified using Variational Bayesian Equivalent Current Dipole source reconstruction. A connectivity analysis tested how words and false font stimuli differentially modulated activity between these regions within the first 300 ms after stimulus presentation. We found that left inferior frontal activity showed stronger sensitivity to words than false font and a stronger feedback connection onto the left ventral occipitotemporal cortex (vOT) in the first 200 ms. Subsequently, the effect of words relative to false font was observed on feedforward connections from left occipital to ventral occipitotemporal and frontal regions. These findings demonstrate that left inferior frontal activity modulates vOT in the early stages of word processing and provides a mechanistic account of top-down effects during word recognition

    Temporal regularity of the environment drives time perception

    Get PDF
    It’s reasonable to assume that a regularly paced sequence should be perceived as regular, but here we show that perceived regularity depends on the context in which the sequence is embedded. We presented one group of participants with perceptually regularly paced sequences, and another group of participants with mostly irregularly paced sequences (75% irregular, 25% regular). The timing of the final stimulus in each sequence could be varied. In one experiment, we asked whether the last stimulus was regular or not. We found that participants exposed to an irregular environment frequently reported perfectly regularly paced stimuli to be irregular. In a second experiment, we asked participants to judge whether the final stimulus was presented before or after a flash. In this way, we were able to determine distortions in temporal perception as changes in the timing necessary for the sound and the flash to be perceived synchronous. We found that within a regular context, the perceived timing of deviant last stimuli changed so that the relative anisochrony appeared to be perceptually decreased. In the irregular context, the perceived timing of irregular stimuli following a regular sequence was not affected. These observations suggest that humans use temporal expectations to evaluate the regularity of sequences and that expectations are combined with sensory stimuli to adapt perceived timing to follow the statistics of the environment. Expectations can be seen as a-priori probabilities on which perceived timing of stimuli depend
    corecore