5 research outputs found

    Randomized Controlled Trial of Fish Oil and Montelukast and Their Combination on Airway Inflammation and Hyperpnea-Induced Bronchoconstriction

    Get PDF
    Both fish oil and montelukast have been shown to reduce the severity of exercise-induced bronchoconstriction (EIB). The purpose of this study was to compare the effects of fish oil and montelukast, alone and in combination, on airway inflammation and bronchoconstriction induced by eucapnic voluntary hyperpnea (EVH) in asthmatics. In this model of EIB, twenty asthmatic subjects with documented hyperpnea-induced bronchoconstriction (HIB) entered a randomized double-blind trial. All subjects entered on their usual diet (pre-treatment, n = 20) and then were randomly assigned to receive either one active 10 mg montelukast tablet and 10 placebo fish oil capsules (n = 10) or one placebo montelukast tablet and 10 active fish oil capsules totaling 3.2 g EPA and 2.0 g DHA (n = 10) taken daily for 3-wk. Thereafter, all subjects (combination treatment; n = 20) underwent another 3-wk treatment period consisting of a 10 mg active montelukast tablet or 10 active fish oil capsules taken daily. While HIB was significantly inhibited (p0.017) between treatment groups; percent fall in forced expiratory volume in 1-sec was −18.4±2.1%, −9.3±2.8%, −11.6±2.8% and −10.8±1.7% on usual diet (pre-treatment), fish oil, montelukast and combination treatment respectively. All three treatments were associated with a significant reduction (p0.017) in these biomarkers between treatments. While fish oil and montelukast are both effective in attenuating airway inflammation and HIB, combining fish oil with montelukast did not confer a greater protective effect than either intervention alone. Fish oil supplementation should be considered as an alternative treatment for EIB

    Eucapnic Voluntary Hyperpnea: Gold Standard for Diagnosing Exercise-Induced Bronchoconstriction in Athletes?

    Get PDF
    In athletes, a secure diagnos is of exercise-induced bronchoconstriction (EIB) is dependent on objective testing. Evaluating spirometric indices of airflow before and following an exercise bout is intuitively the optimal means for the diagnosis; however, this approach is recognized as having several key limitations. Accordingly, alternative indirect bronchoprovocation tests have been recommended as surrogate means for obtaining a diagnosis of EIB. Of these tests, it is often argued that the eucapnic voluntary hyperpnea (EVH) challenge represents the ‘gold standard’. This article provides a state-of-the-art review of EVH, including an overview of the test methodology and its interpretation. We also address the performance of EVH against the other functional and clinical approaches commonly adopted for the diagnosis of EIB. The published evidence supports a key role for EVH in the diagnostic algorithm for EIB testing in athletes. However, its wide sensitivity and specificity and poor repeatability preclude EVH from being termed a ‘gold standard’ test for EIB

    The effects of short-term fish oil supplementation on pulmonary function and airway inflammation following a high-fat meal.

    Get PDF
    Introduction Many environmental and dietary influences can cause immune cells to produce biological mediators that increase airway inflammation. A high-fat meal (HFM) is one stimulus that increases airway inflammation in healthy individuals. Supplementation with omega-3 fatty acids can reduce inflammation systemically and may be beneficial to the airways. Purpose To determine if omega-3 fatty acid supplementation via fish oil would mitigate the airway inflammatory response induced by a single HFM. Methods Seventeen non-asthmatic men (22 ± 2 years.) were supplemented with 3,000 mg × day⁻¹ fish oil or a placebo for 3 weeks. Fractional exhaled nitric oxide (FENO; a marker of airway inflammation), impulse oscillometry (a measure of respiratory impedance), pulmonary function, and triglycerides were measured prior to and 2 h following a HFM. Results Following a HFM, triglycerides increased in both fish oil and placebo groups compared to pre-HFM (~59 and ~49 %, respectively, p < 0.05). The percent increase in FENO was greater in the placebo group compared to the fish oil group (25.7 ± 16.7 vs. −1.99 ± 10.5 %, respectively, p < 0.05). A significant correlation was observed between blood triglycerides and FENO in the placebo group (r = 0.61; p < 0.05), but not the fish oil group (p = 0.21). Conclusion A single HFM increases airway inflammation and omega-3 fatty acid supplementation via fish oil protects against HFM associated changes in airway health
    corecore