87 research outputs found

    The evolution of sex ratio distorter suppression affects a 25 cM genomic region in the butterfly Hypolimnas bolina

    Get PDF
    Open Access ArticleSymbionts that distort their host's sex ratio by favouring the production and survival of females are common in arthropods. Their presence produces intense Fisherian selection to return the sex ratio to parity, typified by the rapid spread of host 'suppressor' loci that restore male survival/development. In this study, we investigated the genomic impact of a selective event of this kind in the butterfly Hypolimnas bolina. Through linkage mapping, we first identified a genomic region that was necessary for males to survive Wolbachia-induced male-killing. We then investigated the genomic impact of the rapid spread of suppression, which converted the Samoan population of this butterfly from a 100:1 female-biased sex ratio in 2001 to a 1:1 sex ratio by 2006. Models of this process revealed the potential for a chromosome-wide effect. To measure the impact of this episode of selection directly, the pattern of genetic variation before and after the spread of suppression was compared. Changes in allele frequencies were observed over a 25 cM region surrounding the suppressor locus, with a reduction in overall diversity observed at loci that co-segregate with the suppressor. These changes exceeded those expected from drift and occurred alongside the generation of linkage disequilibrium. The presence of novel allelic variants in 2006 suggests that the suppressor was likely to have been introduced via immigration rather than through de novo mutation. In addition, further sampling in 2010 indicated that many of the introduced variants were lost or had declined in frequency since 2006. We hypothesize that this loss may have resulted from a period of purifying selection, removing deleterious material that introgressed during the initial sweep. Our observations of the impact of suppression of sex ratio distorting activity reveal a very wide genomic imprint, reflecting its status as one of the strongest selective forces in nature.Natural Environment Research Council (NERC

    Macrophage-mediated response to hypoxia in disease

    Get PDF
    Hypoxia plays a critical role in the pathobiology of various inflamed, diseased tissues, including malignant tumors, atherosclerotic plaques, myocardial infarcts, the synovia of rheumatoid arthritic joints, healing wounds, and sites of bacterial infection. These areas of hypoxia form when the blood supply is occluded and/or the oxygen supply is unable to keep pace with cell growth and/or infiltration of inflammatory cells. Macrophages are ubiquitous in all tissues of the body and exhibit great plasticity, allowing them to perform divergent functions, including, among others, patrolling tissue, combating invading pathogens and tumor cells, orchestrating wound healing, and restoring homeostasis after an inflammatory response. The number of tissue macrophages increases markedly with the onset and progression of many pathological states, with many macrophages accumulating in avascular and necrotic areas, where they are exposed to hypoxia. Recent studies show that these highly versatile cells then respond rapidly to the hypoxia present by altering their expression of a wide array of genes. Here we review the evidence for hypoxia-driven macrophage inflammatory responses in various disease states, and how this influences disease progression and treatment

    Vitamin D associates with improved quality of life in participants with irritable bowel syndrome: outcomes from a pilot trial

    Get PDF
    Background: Vitamin D deficiency has been associated or implicated with the pathophysiology of the gastrointestinal conditions inflammatory bowel disease and colorectal cancer, as well as with depression. No trials or epidemiology studies to date have investigated a link with irritable bowel syndrome (IBS). A single case report has suggested a benefit in IBS of vitamin D supplementation. We hypothesised that IBS participants with vitamin D insufficiency would benefit from repletion in terms of their IBS symptoms. We undertook a pilot trial to provide data to support a power calculation and to justify a full trial. Methods: This was a randomised, double blinded, three-arm parallel design trial of vitamin D, placebo or a combination of vitamin D and probiotics. Participants were further stratified according to whether they were vitamin D replete or insufficient. Vitamin D status was determined by blood test at baseline and exit; IBS symptoms were assessed by validated questionnaire; dietary intakes were assessed by food frequency questionnaire. Results: A significant proportion of the IBS population were vitamin D deficient, such that the replete stratum could not be adequately recruited. There was a significant association in the baseline data between circulating vitamin D level and quality of life (“How much has IBS affected your life?”). Supplementation significantly improved vitamin D level versus placebo. IBS symptoms were not significantly improved in this pilot, although a power calculation was enabled from the intervention data. Conclusions: The IBS population exhibits significant levels of vitamin D insufficiency and would benefit from screening and possible supplementation. The impact of IBS on quality of life may be reduced by vitamin D level. Future trials should have a sample size of over 9

    Preventing and repairing myeloma bone disease by combining conventional antiresorptive treatment with a bone anabolic agent in murine models

    Get PDF
    Multiple myeloma is a plasma cell malignancy, which develops in the bone marrow and frequently leads to severe bone destruction. Current antiresorptive therapies to treat the bone disease do little to repair damaged bone; therefore, new treatment strategies incorporating bone anabolic therapies are urgently required. We hypothesized that combination therapy using the standard of care antiresorptive zoledronic acid (Zol) with a bone anabolic (anti-TGFβ/1D11) would be more effective at treating myeloma-induced bone disease than Zol therapy alone. JJN3 myeloma-bearing mice (n = 8/group) treated with combined Zol and 1D11 resulted in a 48% increase (p≤0.001) in BV/TV compared to Zol alone and a 65% increase (p≤0.0001) compared to 1D11 alone. Our most significant finding was the substantial repair of U266-induced osteolytic bone lesions with combination therapy (n = 8/group), which resulted in a significant reduction in lesion area compared to vehicle (p≤0.01) or Zol alone (p≤0.01). These results demonstrate that combined antiresorptive and bone anabolic therapy is significantly more effective at preventing myeloma-induced bone disease than Zol alone. Furthermore, we demonstrate that combined therapy is able to repair established myelomatous bone lesions. This is a highly translational strategy which could significantly improve bone outcomes and quality of life for patients with myeloma

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    The implementation of medical revalidation: an assessment using normalisation process theory

    Get PDF
    Abstract Background Medical revalidation is the process by which all licensed doctors are legally required to demonstrate that they are up to date and fit to practise in order to maintain their licence. Revalidation was introduced in the United Kingdom (UK) in 2012, constituting significant change in the regulation of doctors. The governing body, the General Medical Council (GMC), envisages that revalidation will improve patient care and safety. This potential however is, in part, dependent upon how successfully revalidation is embedded into routine practice. The aim of this study was to use Normalisation Process Theory (NPT) to explore issues contributing to or impeding the implementation of revalidation in practice. Methods We conducted seventy-one interviews with sixty UK policymakers and senior leaders at different points during the development and implementation of revalidation: in 2011 (n = 31), 2013 (n = 26) and 2015 (n = 14). We selected interviewees using purposeful sampling. NPT was used as a framework to enable systematic analysis across the interview sets. Results Initial lack of consensus over revalidation’s purpose, and scepticism about its value, decreased over time as participants recognised the benefits it brought to their practice (coherence category of NPT). Though acceptance increased across time, revalidation was not seen as a legitimate part of their role by all doctors. Key individuals, notably the Responsible Officer (RO), were vital for the successful implementation of revalidation in organisations (cognitive participation category). The ease with which revalidation could be integrated into working practices varied greatly depending on the type of role a doctor held and the organisation they work for and the provision of resources was a significant variable in this (collective action category). Formal evaluation of revalidation in organisations was lacking but informal evaluation was taking place. Revalidation had not yet reached the stage where feedback was being used for improvement (reflexive monitoring category). Conclusions Requiring all organisations to use the same revalidation model made revalidation easy to integrate into existing work for some but problematic for others. In order for revalidation to be fully embedded and successful, impeding factors, such as a lack of resources, need to be addressed

    A novel fragment derived from the β chain of human fibrinogen, β43–63, is a potent inhibitor of activated endothelial cells in vitro and in vivo

    Get PDF
    Background: Angiogenesis and haemostasis are closely linked within tumours with many haemostatic proteins regulating tumour angiogenesis. Indeed we previously identified a fragment of human fibrinogen, fibrinogen E-fragment (FgnE) with potent anti-angiogenic properties in vitro and cytotoxic effects on tumour vessels in vivo. We therefore investigated which region of FgnE was mediating vessel cytotoxicity. Methods: Human dermal microvascular endothelial cells (ECs) were used to test the efficacy of peptides derived from FgnE on proliferation, migration, differentiation, apoptosis and adhesion before testing the efficacy of an active peptide on tumour vasculature in vivo. Results: We identified a 20-amino-acid peptide derived from the β chain of FgnE, β43–63, which had no effect on EC proliferation or migration but markedly inhibited the ability of activated ECs to form tubules or to adhere to various constituents of the extracellular matrix – collagen IV, fibronectin and vitronectin. Furthermore, our data show that β43–63 interacts with ECs, in part, by binding to αvβ3, so soluble αvβ3 abrogated β43–63 inhibition of tubule formation by activated ECs. Finally, when injected into mice bearing tumour xenografts, β43–63 inhibited tumour vascularisation and induced formation of significant tumour necrosis. Conclusions: Taken together, these data suggest that β43–63 is a novel anti-tumour peptide whose anti-angiogenic effects are mediated by αvβ3

    A multi-targeted approach to suppress tumor-promoting inflammation

    Get PDF
    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes
    corecore