814 research outputs found

    The distribution of DNA translocation times in solid-state nanopores

    Get PDF
    Abstract This paper systematically investigates the effects of solution viscosity, applied voltage and DNA chain length on the distribution of DNA translocation times through 8 ± 2 nm diameter silicon nitride nanopores. Linear dsDNA translocation events were selected based on the magnitude of current blockage and accumulated into scatter plots of current blockage and event duration (translocation time). The translocation time distribution was fitted to the solution of a Smoluchowski-type equation for 1D biased diffusion to a sink. The DNA drifting speed under bias and diffusion constant were extracted from the fits as functions of solution viscosity, applied voltage and DNA chain length. Combined with the Einstein-Smoluchowski relation, this model allowed evaluation of the viscous drag force on DNA molecules. This model also allowed estimation of the uncertainty in determining the DNA chain length due to the influence of friction on the spread of translocation times in a nanopore measurement. The data analysis suggests that the simple 1D biased diffusion model fits the experimental data well for a wide range of conditions. Some deviations from predicted behavior were observed and show where additional phenomena are likely to contribute to the distribution of DNA translocation times

    Beam-Based Alignment of the NuMI Target Station Components at FNAL

    Get PDF
    The Neutrinos at the Main Injector (NuMI) facility is a conventional horn-focused neutrino beam which produces muon neutrinos from a beam of mesons directed into a long evacuated decay volume. The relative alignment of the primary proton beam, target, and focusing horns affects the neutrino energy spectrum delivered to experiments. This paper describes a check of the alignment of these components using the proton beam.Comment: higher resolution figures available on Fermilab Preprint Server (see SPIRES entry), accepted for publication in Nucl. Instr. and Meth.

    Experimental constraints on a dark matter origin for the DAMA annual modulation effect

    Get PDF
    A claim for evidence of dark matter interactions in the DAMA experiment has been recently reinforced. We employ a new type of germanium detector to conclusively rule out a standard isothermal galactic halo of Weakly Interacting Massive Particles (WIMPs) as the explanation for the annual modulation effect leading to the claim. Bounds are similarly imposed on a suggestion that dark pseudoscalars mightlead to the effect. We describe the sensitivity to light dark matter particles achievable with our device, in particular to Next-to-Minimal Supersymmetric Model candidates.Comment: v4: introduces recent results from arXiv:0807.3279 and arXiv:0807.2926. Sensitivity to pseudoscalars is revised in light of the first. Discussion on the subject adde

    Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector

    Get PDF
    We report on several features present in the energy spectrum from an ultra low-noise germanium detector operated at 2,100 m.w.e. By implementing a new technique able to reject surface events, a number of cosmogenic peaks can be observed for the first time. We discuss several possible causes for an irreducible excess of bulk-like events below 3 keVee, including a dark matter candidate common to the DAMA/LIBRA annual modulation effect, the hint of a signal in CDMS, and phenomenological predictions. Improved constraints are placed on a cosmological origin for the DAMA/LIBRA effect.Comment: 4 pages, 4 figures. v2: submitted version. Minimal changes in wording, one reference adde

    An improved measurement of muon antineutrino disappearance in MINOS

    Get PDF
    We report an improved measurement of muon anti-neutrino disappearance over a distance of 735km using the MINOS detectors and the Fermilab Main Injector neutrino beam in a muon anti-neutrino enhanced configuration. From a total exposure of 2.95e20 protons on target, of which 42% have not been previously analyzed, we make the most precise measurement of the anti-neutrino "atmospheric" delta-m squared = 2.62 +0.31/-0.28 (stat.) +/- 0.09 (syst.) and constrain the anti-neutrino atmospheric mixing angle >0.75 (90%CL). These values are in agreement with those measured for muon neutrinos, removing the tension reported previously.Comment: 5 pages, 4 figures. In submission to Phys.Rev.Let
    corecore