160 research outputs found

    Article and method for making complex shaped preform and silicon carbide composite by melt infiltration

    Get PDF
    Small diameter silicon carbide-containing fibers are provided in a bundle such as a fiber tow that can be formed into a structure where the radii of curvature is not limited to 10-20 inches. An aspect of this invention is directed to impregnating the bundles of fibers with the slurry composition to substantially coat the outside surface of an individual fiber within the bundle and to form a complex shaped preform with a mass of continuous fibers

    Quark and Nucleon Self-Energy in Dense Matter

    Get PDF
    In a recent work we introduced a nonlocal version of the Nambu--Jona-Lasinio(NJL) model that was designed to generate a quark self-energy in Euclidean space that was similar to that obtained in lattice simulations of QCD. In the present work we carry out related calculations in Minkowski space, so that we can study the effects of the significant vector and axial-vector interactions that appear in extended NJL models and which play an important role in the study of the ρ\rho, ω\omega and a1a_1 mesons. We study the modification of the quark self-energy in the presence of matter and find that our model reproduces the behavior of the quark condensate predicted by the model-independent relation ρ=<qˉq>0(1σNρN/fπ2mπ2+...)_{\rho} = <\bar qq>_0(1-\sigma_N\rho_N/f_{\pi}^2m_{\pi}^2 +...), where σN\sigma_N is the pion-nucleon sigma term and ρN\rho_N is the density of nuclear matter. (Since we do not include a model of confinement, our study is restricted to the analysis of quark matter. We provide some discussion of the modification of the above formula for quark matter.) The inclusion of a quark current mass leads to a second-order phase transition for the restoration of chiral symmetry. That restoration is about 80% at twice nuclear matter density for the model considered in this work. We also find that the part of the quark self-energy that is explicitly dependent upon density has a strong negative Lorentz-scalar term and a strong positive Lorentz-vector term, which is analogous to the self-energy found for the nucleon in nuclear matter when one makes use of the Dirac equation for the nucleon. In this work we calculate the nucleon self -energy in nuclear matter using our model of the quark self-energy and obtain satisfactory results.Comment: 19 pages, 8 figures, 2 tables, revte

    Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus, a New Twist on ATP Formation.

    Get PDF
    UnlabelledSyntrophus aciditrophicus is a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation by S.&nbsp;aciditrophicus However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome of S.&nbsp;aciditrophicus leaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show that S.&nbsp;aciditrophicus uses AMP-forming, acetyl-CoA synthetase (Acs1) for ATP synthesis from acetyl-CoA. acs1 mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, of S.&nbsp;aciditrophicus grown in pure culture and coculture. Cell extracts of S.&nbsp;aciditrophicus had low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified from S.&nbsp;aciditrophicus and recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4) in S.&nbsp;aciditrophicus cells support the operation of Acs1 in the acetate-forming direction. Thus, S.&nbsp;aciditrophicus has a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase.ImportanceBacteria use two enzymes, phosphate acetyltransferase and acetate kinase, to make ATP from acetyl-CoA, while acetate-forming archaea use a single enzyme, an ADP-forming, acetyl-CoA synthetase, to synthesize ATP and acetate from acetyl-CoA. Syntrophus aciditrophicus apparently relies on a different approach to conserve energy during acetyl-CoA metabolism, as its genome does not have homologs to the genes for phosphate acetyltransferase and acetate kinase. Here, we show that S.&nbsp;aciditrophicus uses an alternative approach, an AMP-forming, acetyl-CoA synthetase, to make ATP from acetyl-CoA. AMP-forming, acetyl-CoA synthetases were previously thought to function only in the activation of acetate to acetyl-CoA

    Defective endoplasmic reticulum-mitochondria contacts and bioenergetics in SEPN1-related myopathy

    Get PDF
    SEPN1-related myopathy (SEPN1-RM) is a muscle disorder due to mutations of the SEPN1 gene, which is characterized by muscle weakness and fatigue leading to scoliosis and life-threatening respiratory failure. Core lesions, focal areas of mitochondria depletion in skeletal muscle fibers, are the most common histopathological lesion. SEPN1-RM underlying mechanisms and the precise role of SEPN1 in muscle remained incompletely understood, hindering the development of biomarkers and therapies for this untreatable disease. To investigate the pathophysiological pathways in SEPN1-RM, we performed metabolic studies, calcium and ATP measurements, super-resolution and electron microscopy on in vivo and in vitro models of SEPN1 deficiency as well as muscle biopsies from SEPN1-RM patients. Mouse models of SEPN1 deficiency showed marked alterations in mitochondrial physiology and energy metabolism, suggesting that SEPN1 controls mitochondrial bioenergetics. Moreover, we found that SEPN1 was enriched at the mitochondria-associated membranes (MAM), and was needed for calcium transients between ER and mitochondria, as well as for the integrity of ER-mitochondria contacts. Consistently, loss of SEPN1 in patients was associated with alterations in body composition which correlated with the severity of muscle weakness, and with impaired ER-mitochondria contacts and low ATP levels. Our results indicate a role of SEPN1 as a novel MAM protein involved in mitochondrial bioenergetics. They also identify a systemic bioenergetic component in SEPN1-RM and establish mitochondria as a novel therapeutic target. This role of SEPN1 contributes to explain the fatigue and core lesions in skeletal muscle as well as the body composition abnormalities identified as part of the SEPN1-RM phenotype. Finally, these results point out to an unrecognized interplay between mitochondrial bioenergetics and ER homeostasis in skeletal muscle. They could therefore pave the way to the identification of biomarkers and therapeutic drugs for SEPN1-RM and for other disorders in which muscle ER-mitochondria cross-talk are impaired

    Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy

    Get PDF
    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible for the latter. To elucidate the role of POX in oxLDL-mediated cytotoxicity, we knocked down POX via small interfering RNA and found that this (i) further reduced viability of cancer cells treated with oxLDL; (ii) decreased oxLDL-associated reactive oxygen species generation; (iii) decreased autophagy measured via beclin-1 protein level and light-chain 3 protein (LC3)-I into LC3-II conversion. Using POX-expressing cell model, we established that single POX overexpression was sufficient to activate autophagy. Thus, it led to autophagosomes accumulation and increased conversion of LC3-I into LC3-II. Moreover, beclin-1 gene expression was directly dependent on POX catalytic activity, namely the generation of POX-dependent superoxide. We conclude that POX is critical in the cellular response to the noxious effects of oxLDL by activating protective autophagy

    Sequence-defined multifunctional polyethers via liquid-phase synthesis with molecular sieving

    Get PDF
    Synthetic chemists have devoted tremendous effort towards the production of precision synthetic polymers with defined sequences and specific functions. However, the creation of a general technology that enables precise control over monomer sequence, with efficient isolation of the target polymers, is highly challenging. Here, we report a robust strategy for the production of sequence-defined synthetic polymers through a combination of liquid-phase synthesis and selective molecular sieving. The polymer is assembled in solution with real-time monitoring to ensure couplings proceed to completion, on a three-armed star-shaped macromolecule to maximize efficiency during the molecular sieving process. This approach is applied to the construction of sequence-defined polyethers, with side-arms at precisely defined locations that can undergo site-selective modification after polymerization. Using this versatile strategy, we have introduced structural and functional diversity into sequence-defined polyethers, unlocking their potential for real-life applications in nanotechnology, healthcare and information storage

    Method-dependent epidemiological cutoff values (ECVs) for detection of triazole resistance in Candida and Aspergillus species for the SYO colorimetric broth and Etest agar diffusion methods

    Get PDF
    Although the Sensitrite Yeast-One (SYO) and Etest methods are widely utilized, interpretive criteria are not available for triazole susceptibility testing of Candida or Aspergillus species. We collected fluconazole, itraconazole, posaconazole and voriconazole SYO and Etest MICs from 39 laboratories representing all continents for (method-agent-dependent): 11,171 Candida albicans, 215 C. dubliniensis, 4,418 C. glabrata species complex (SC), 157 C. (Meyerozyma) guilliermondii, 676 C. krusei (Pichia kudriavzevii), 298 C (Clavispora) lusitaniae, 911 and 3,691 C. parapsilosissensu stricto (SS) and C. parapsilosisSC, respectively, 36 C. metapsilosis, 110 C. orthopsilosis, 1,854 C. tropicalis, 244 Saccharomyces cerevisiae, 1,409 Aspergillus fumigatus, 389 A. flavus, 130 A. nidulans, 233 A. niger, and 302 A. terreus complexes. SYO/Etest MICs for 282 confirmed non-WT isolates were included: ERG11 (C. albicans), ERG11 and MRR1 (C. parapsilosis), cyp51A (A. fumigatus), and CDR2, CDR1 overexpression (C. albicans and C. glabrata, respectively). Interlaboratory modal agreement was superior by SYO for yeast spp., and by the Etest for Aspergillus spp. Distributions fulfilling CLSI criteria for ECV definition were pooled and we proposed SYO ECVs for S. cerevisiae, 9 yeast and 3 Aspergillus species, and Etest ECVs for 5 yeast and 4 Aspergillus species. The posaconazole SYO ECV of 0.06 \ub5g/ml for C. albicans and the Etest itraconazole ECV of 2 \ub5g/ml for A. fumigatus were the best predictors of non-WT isolates. These findings support the need for method-dependent ECVs, as overall, the SYO appears to perform better for susceptibility testing of yeast spp. and the Etest for Aspergillus spp. Further evaluations should be conducted with more Candida mutants

    An in silico model of the ubiquitin-proteasome system that incorporates normal homeostasis and age-related decline

    Get PDF
    BACKGROUND: The ubiquitin-proteasome system is responsible for homeostatic degradation of intact protein substrates as well as the elimination of damaged or misfolded proteins that might otherwise aggregate. During ageing there is a decline in proteasome activity and an increase in aggregated proteins. Many neurodegenerative diseases are characterised by the presence of distinctive ubiquitin-positive inclusion bodies in affected regions of the brain. These inclusions consist of insoluble, unfolded, ubiquitinated polypeptides that fail to be targeted and degraded by the proteasome. We are using a systems biology approach to try and determine the primary event in the decline in proteolytic capacity with age and whether there is in fact a vicious cycle of inhibition, with accumulating aggregates further inhibiting proteolysis, prompting accumulation of aggregates and so on. A stochastic model of the ubiquitin-proteasome system has been developed using the Systems Biology Mark-up Language (SBML). Simulations are carried out on the BASIS (Biology of Ageing e-Science Integration and Simulation) system and the model output is compared to experimental data wherein levels of ubiquitin and ubiquitinated substrates are monitored in cultured cells under various conditions. The model can be used to predict the effects of different experimental procedures such as inhibition of the proteasome or shutting down the enzyme cascade responsible for ubiquitin conjugation. RESULTS: The model output shows good agreement with experimental data under a number of different conditions. However, our model predicts that monomeric ubiquitin pools are always depleted under conditions of proteasome inhibition, whereas experimental data show that monomeric pools were depleted in IMR-90 cells but not in ts20 cells, suggesting that cell lines vary in their ability to replenish ubiquitin pools and there is the need to incorporate ubiquitin turnover into the model. Sensitivity analysis of the model revealed which parameters have an important effect on protein turnover and aggregation kinetics. CONCLUSION: We have developed a model of the ubiquitin-proteasome system using an iterative approach of model building and validation against experimental data. Using SBML to encode the model ensures that it can be easily modified and extended as more data become available. Important aspects to be included in subsequent models are details of ubiquitin turnover, models of autophagy, the inclusion of a pool of short-lived proteins and further details of the aggregation process

    Synthesis and characterization of silicon nitride whiskers

    Full text link
    Silicon nitride whiskers were synthesized by the carbothermal reduction of silica under nitrogen gas flow. The formation of silicon nitride whiskers occurs through a gas-phase reaction, 3SiO(g)+3CO(g)+2N 2 (g)=Si 3 N 4 ( β )+3CO 2 (g), and the VS mechanism. The generation of SiO gas was enhanced by the application of a halide bath. Various nitrogen flow rates resulted in different whisker yields and morphologies. A suitable gas composition range of N 2 , SiO and O 2 is necessary to make silicon nitride stable and grow in a whisker form. The oxygen partial pressure of the gas phase was measured by an oxygen sensor and the gas phase was analysed for CO/CO 2 by gas chromatography. Silicon nitride was first formed as a granule, typically a polycrystalline, and then grown as a single crystal whisker from the {1 0 0} plane of the granule along the 〈 210 〉 direction. The whiskers were identified as β ′-sialon with Z value ranging from 0.8 to 1.1, determined by lattice parameter measurements.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44697/1/10853_2004_Article_BF01045372.pd

    Modelling the Role of the Hsp70/Hsp90 System in the Maintenance of Protein Homeostasis

    Get PDF
    Neurodegeneration is an age-related disorder which is characterised by the accumulation of aggregated protein and neuronal cell death. There are many different neurodegenerative diseases which are classified according to the specific proteins involved and the regions of the brain which are affected. Despite individual differences, there are common mechanisms at the sub-cellular level leading to loss of protein homeostasis. The two central systems in protein homeostasis are the chaperone system, which promotes correct protein folding, and the cellular proteolytic system, which degrades misfolded or damaged proteins. Since these systems and their interactions are very complex, we use mathematical modelling to aid understanding of the processes involved. The model developed in this study focuses on the role of Hsp70 (IPR00103) and Hsp90 (IPR001404) chaperones in preventing both protein aggregation and cell death. Simulations were performed under three different conditions: no stress; transient stress due to an increase in reactive oxygen species; and high stress due to sustained increases in reactive oxygen species. The model predicts that protein homeostasis can be maintained during short periods of stress. However, under long periods of stress, the chaperone system becomes overwhelmed and the probability of cell death pathways being activated increases. Simulations were also run in which cell death mediated by the JNK (P45983) and p38 (Q16539) pathways was inhibited. The model predicts that inhibiting either or both of these pathways may delay cell death but does not stop the aggregation process and that eventually cells die due to aggregated protein inhibiting proteasomal function. This problem can be overcome if the sequestration of aggregated protein into inclusion bodies is enhanced. This model predicts responses to reactive oxygen species-mediated stress that are consistent with currently available experimental data. The model can be used to assess specific interventions to reduce cell death due to impaired protein homeostasis
    corecore