18 research outputs found

    Six pelagic seabird species of the North Atlantic engage in a fly-and-forage strategy during their migratory movements

    Get PDF
    Funding Information: We thank all the fieldworkers for their hard work collecting data. Funding for this study was provided by the Norwegian Ministry for Climate and the Environment, the Norwegian Ministry of Foreign Affairs and the Norwegian Oil and Gas Association along with 8 oil companies through the SEATRACK project (www. seapop. no/ en/ seatrack). Fieldwork in Norwegian colonies (incl. Svalbard and Jan Mayen) was supported by the SEAPOP program (www.seapop.no, grant no. 192141). The French Polar Institute (IPEV project 330 to O.C.) supported field operation for Kongsfjord kittiwakes. The work on the Isle of May was also supported by the Natural Environment Research Council (Award NE/R016429/1 as part of the UK-SCaPE programme delivering National Capability). We thank Maria Bogdanova for field support and data processing. Finally, we thank 3 anonymous reviewers for their help improving the first version of the manuscript.Peer reviewedPublisher PD

    Six pelagic seabird species of the North Atlantic engage in a fly-and-forage strategy during their migratory movements

    Get PDF
    Bird migration is commonly defined as a seasonal movement between breeding and non-breeding grounds. It generally involves relatively straight and directed large-scale movements, with a latitudinal change, and specific daily activity patterns comprising less or no foraging and more traveling time. Our main objective was to describe how this general definition applies to seabirds. We investigated migration characteristics of 6 pelagic seabird species (little auk Alle alle, Atlantic puffin Fratercula arctica, common guillemot Uria aalge, Brünnich’s guillemot U. lomvia, black-legged kittiwake Rissa tridactyla and northern fulmars Fulmarus glacialis). We analysed an extensive geolocator positional and saltwater immersion dataset from 29 colonies in the North-East Atlantic and across several years (2008-2019). We used a novel method to identify active migration periods based on segmentation of time series of track characteristics (latitude, longitude, net-squared displacement). Additionally, we used the saltwater immersion data of geolocators to infer bird activity. We found that the 6 species had, on average, 3 to 4 migration periods and 2 to 3 distinct stationary areas during the non-breeding season. On average, seabirds spent the winter at lower latitudes than their breeding colonies and followed specific migration routes rather than non-directionally dispersing from their colonies. Differences in daily activity patterns were small between migratory and stationary periods, suggesting that all species continued to forage and rest while migrating, engaging in a ‘fly-and-forage’ migratory strategy. We thereby demonstrate the importance of habitats visited during seabird migrations as those that are not just flown over, but which may be important for re-fuelling.publishedVersio

    Meeting Paris agreement objectives will temper seabird winter distribution shifts in the North Atlantic Ocean

    Get PDF
    We explored the implications of reaching the Paris Agreement Objective of limiting global warming to <2°C for the future winter distribution of the North Atlantic seabird community. We predicted and quantified current and future winter habitats of five North Atlantic Ocean seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia and Rissa tridactyla) using tracking data for ~1500 individuals through resource selection functions based on mechanistic modeling of seabird energy requirements, and a dynamic bioclimate envelope model of seabird prey. Future winter distributions were predicted to shift with climate change, especially when global warming exceed 2°C under a “no mitigation” scenario, modifying seabird wintering hotspots in the North Atlantic Ocean. Our findings suggest that meeting Paris agreement objectives will limit changes in seabird selected habitat location and size in the North Atlantic Ocean during the 21st century. We thereby provide key information for the design of adaptive marine‐protected areas in a changing ocean

    Inter-annual variation in winter distribution affects individual seabird contamination with mercury

    No full text
    International audienceMigratory seabirds are exposed to various pollutants throughout their annual cycle. Among them, mercury (Hg) is of particular concern given its large impact on animal health. Recent studies suggest that winter is a critical period for seabirds when contamination by Hg can be higher than at other times of year. However, individuals within and between species can have different migration strategies that could affect their exposure. Here, we combined multi-year individual tracking data and Hg measurements from 6 Arctic seabird species. We investigated whether inter-annual variations in individual winter contamination with Hg was related to seabird fidelity to a wintering site over years. First, our results show that Hg concentrations above the toxicity threshold (i.e. 5 μg g–1 dry weight in feathers) were observed in variable proportions according to species (from 2% of northern fulmars to 37% of Brünnich’s guillemots). Second, individuals with high fidelity to a wintering ground had more similar Hg concentrations among years compared to individuals with low fidelity, suggesting an effect of their migratory strategy on Hg contamination. Further, we found that the directional change in wintering areas among years influenced seabird Hg contamination, highlighting an additional effect of seabirds’ winter distribution. More specifically, individuals migrating to the northwest direction of a previous wintering ground tended to be more contaminated compared those moving to eastern directions. These results confirm spatial differences in Hg concentration throughout the North Atlantic–Arctic and an east-west gradient increase in Hg concentrations. Verifying this trend will require more large-scale ecotoxicological studies at smaller spatial resolution

    Seasonal variation of mercury contamination in Arctic seabirds: A pan-Arctic assessment

    Get PDF
    Mercury (Hg) is a natural trace element found in high concentrations in top predators, including Arctic seabirds. Most current knowledge about Hg concentrations in Arctic seabirds relates to exposure during the summer breeding period when researchers can easily access seabirds at colonies. However, the few studies focused on winter have shown higher Hg concentrations during the non-breeding period than breeding period in several tissues. Hence, improving knowledge about Hg exposure during the non-breeding period is crucial to understanding the threats and risks encountered by these species year-round. We used feathers of nine migratory alcid species occurring at high latitudes to study bird Hg exposure during both the breeding and non-breeding periods. Overall, Hg concentrations during the non-breeding period were ~3 times higher than during the breeding period. In addition, spatial differences were apparent within and between the Atlantic and Pacific regions. While Hg concentrations during the non-breeding period were ~9 times and ~3 times higher than during the breeding period for the West and East Atlantic respectively, Hg concentrations in the Pacific during the non-breeding period were only ~1.7 times higher than during the breeding period. In addition, individual Hg concentrations during the non-breeding period for most of the seabird colonies were above 5 μg g−1 dry weight (dw), which is considered to be the threshold atwhich deleterious effects are observed, suggesting that some breeding populations might be vulnerable to non-breeding Hg exposure. Since wintering area locations, and migration routes may influence seasonal Hg concentrations, it is crucial to improve our knowledge about spatial ecotoxicology to fully understand the risks associated with Hg contamination in Arctic seabirds. Polar Top predators Metal Seasonal variation FeathersacceptedVersio

    Meeting Paris agreement objectives will temper seabird winter distribution shifts in the North Atlantic Ocean

    No full text
    International audienceWe explored the implications of reaching the Paris Agreement Objective of limiting global warming to <2°C for the future winter distribution of the North Atlantic sea-bird community. We predicted and quantified current and future winter habitats of five North Atlantic Ocean seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia and Rissa tridactyla) using tracking data for ~1500 individuals through resource selection functions based on mechanistic modeling of seabird energy requirements, and a dynamic bioclimate envelope model of seabird prey. Future winter distributions were predicted to shift with climate change, especially when global warming exceed 2°C under a “no mitigation” scenario, modifying seabird wintering hotspots in the North Atlantic Ocean. Our findings suggest that meeting Paris agreement objectives will limit changes in seabird selected habitat location and size in the North Atlantic Ocean during the 21st century. We thereby provide key information for the design of adaptive marine-protected areas in a changing ocea
    corecore