20 research outputs found

    Citizen seismology helps decipher the 2021 Haiti earthquake

    Get PDF
    5 pages, 4 figures, supplementary materials https://doi.org/10.1126/science.abn1045.-- Data and materials availability: All data and code used in this study are openly available. RADAR data can be obtained through ESA (Sentinel) or JAXA (Alos-2). Aftershock data can be obtained from https://ayiti.unice.fr/ayiti-seismes/ (7). The codes used to process or model the data are published and public (8). The catalog of high-precision earthquake relocated with the NLL-SSST-coherence procedure (SM4) is available as supplementary dataOn 14 August 2021, the moment magnitude (Mw) 7.2 Nippes earthquake in Haiti occurred within the same fault zone as its devastating 2010 Mw 7.0 predecessor, but struck the country when field access was limited by insecurity and conventional seismometers from the national network were inoperative. A network of citizen seismometers installed in 2019 provided near-field data critical to rapidly understand the mechanism of the mainshock and monitor its aftershock sequence. Their real-time data defined two aftershock clusters that coincide with two areas of coseismic slip derived from inversions of conventional seismological and geodetic data. Machine learning applied to data from the citizen seismometer closest to the mainshock allows us to forecast aftershocks as accurately as with the network-derived catalog. This shows the utility of citizen science contributing to our understanding of a major earthquakeThis work was supported by the Centre National de la Recherche Scientifique (CNRS) and the Institut de Recherche pour le DĂ©veloppement (IRD) through their “Natural Hazard” program (E.C., S.S., T.M., B.D., F.C., J.P.A., J.C., A.D., D.B., S.P.); the FEDER European Community program within the Interreg CaraĂŻbes “PREST” project (E.C., S.S., D.B.); Institut Universitaire de France (E.C., R.J.); UniversitĂ© CĂŽte d’Azur and the French Embassy in Haiti (S.P.); the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant no. 758210, Geo4D project to R.J. and grant no. 805256 to Z.D.); the French National Research Agency (project ANR-21-CE03-0010 “OSMOSE” to E.C. and ANR-15-IDEX-01 “UCAJEDI Investments in the Future” to Q.B.); the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant no. 949221 to Q.B.); and HPC resources of IDRIS (under allocations 2020-AD011012142, 2021-AP011012536, and 2021-A0101012314 to Q.B.With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe

    Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles

    Get PDF
    Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60–100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120–160 km depth suggests that the slab’s mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics

    30 years in the life of an active submarine volcano: A time-lapse bathymetry study of the Kick-‘em-Jenny Volcano, Lesser Antilles

    Get PDF
    Effective monitoring is an essential part of identifying and mitigating volcanic hazards. In the submarine environment this is more difficult than onshore because observations are typically limited to land-based seismic networks and infrequent shipboard surveys. Since the first recorded eruption in 1939, the Kick-‘em-Jenny (KeJ) volcano, located 8km off northern Grenada, has been the source of 13 episodes of T-phase signals. These distinctive seismic signals, often coincident with heightened body-wave seismicity, are interpreted as extrusive eruptions. They have occurred with a recurrence interval of around a decade, yet direct confirmation of volcanism has been rare. By conducting new bathymetric surveys in 2016 and 2017 and reprocessing 4 legacy datasets spanning 30 years we present a clearer picture of the development of KeJ through time. Processed grids with a cell size of 5m and vertical precision on the order of 1-4m allow us to correlate T-phase episodes with morphological changes at the volcano's edifice. In the time-period of observation 7.09x106 m3 of material has been added through constructive volcanism – yet 5 times this amount has been lost through landslides. Limited recent magma production suggests that KeJ may be susceptible to larger eruptions with longer repeat times than have occurred during the study interval, behavior more similar to sub-aerial volcanism in the arc than previously thought. T-phase signals at KeJ have a varied origin and are unlikely to be solely the result of extrusive submarine eruptions. Our results confirm the value of repeat swath bathymetry surveys in assessing submarine volcanic hazards

    Rupture Geometry and Slip Distribution of the Mw 7.2 Nippes Earthquake, Haiti, From Space Geodetic Data

    No full text
    Abstract On 14 August 2021 the Mw 7.2 Nippes earthquake struck southern Haiti, rupturing a segment of the Enriquillo‐Plantain Garden Fault system (EPGF), a 300 km‐long strike‐slip fault system that accommodates half of the highly oblique convergence displacement between the Caribbean and the North American plates. We use coseismic surface displacements from Interferometric Synthetic Aperture Radar and Global Navigation Satellite System (GNSS) to estimate the geometry of the rupture through a systematic parametric exploration, determine its mechanism, and relate them to the regional tectonics derived from interseismic GNSS measurements. We show that the earthquake ruptured a north dipping fault (66 ± 4° dip) with a geodetically determined moment release that is 40% reverse and 60% strike‐slip. We cannot conclude whether this north‐dipping structure is the EPGF itself or a distinct fault running parallel to the EPGF. The rupture then evolved to the west on a vertical (86 ± 2° dip) fault parallel to the EPGF, the Ravine du Sud fault, with left‐lateral strike‐slip motion. The coseismic slip distribution of the 2010 LĂ©ogane and 2021 Nippes earthquakes, consistent with the transpressional interseismic strain rate field, show a segmentation of the Caribbean–North American plate boundary in southern Haiti and imply a revision in our understanding of the mode of earthquake rupture within the EPGF system

    Current block motions and strain accumulation on active faults in the Caribbean

    No full text
    International audienceThe Caribbean plate and its boundaries with north and south America, marked by subduction and large intra-arc strike-slip faults, are a natural laboratory for the study of strain partitioning and interseismic plate coupling in relation to large earthquakes. Here we use most of the available campaign and continuous GPS measurements in the Caribbean to derive a regional velocity field expressed in a consistent reference frame. We use this velocity field as input to a kinematic model where surface velocities results from the rotation of rigid blocks bounded by locked faults accumulating interseismic strain, while allowing for partial locking along the Lesser Antilles, Puerto Rico, and Hispaniola subduction. We test various block geometries, guided by previous regional kinematic models and geological information on active faults. Our findings refine a number of previously established results, in particular slip rates on the strike-slip faults systems bounding the Caribbean plate to the north and south, and the kinematics of the Gonave microplate. Our much-improved GPS velocity field in the Lesser Antilles compared to previous studies does not require the existence of a distinct Northern Lesser Antilles block and excludes more than 3 mm/yr of strain accumulation on the Lesser Antilles-Puerto Rico subduction plate interface, which appears essentially uncoupled. The transition from a coupled to an uncoupled subduction coincides with a transition in the long-term geological behavior of the Caribbean plate margin from compressional (Hispaniola) to extensional (Puerto Rico and Lesser Antilles), a characteristics shared with several other subduction systems

    Ongoing tectonic subsidence in the Lesser Antilles subduction zone

    No full text
    Geological estimates of vertical motions in the central part of the Lesser Antilles show subsidence on timescales ranging from 125.000 to 100 yr, which has been interpreted to be caused by interseismic locking along the subduction megathrust. However, horizontal GNSS velocities show that the Lesser Antilles subduction interface is currently building up little to no elastic strain. Here, we present new present-day vertical velocities for the Lesser Antilles islands and explore the link between short- and long-term vertical motions and their underlying processes. We find a geodetic subsidence of the Lesser Antilles island arc at 1-2 mm yr-1, consistent with the ∌100-yr trend derived from coral micro-atolls. Using elastic dislocation models, we show that a locked or partially locked subduction interface would produce uplift of the island arc, opposite to the observations, hence supporting a poorly coupled subduction. We propose that this long-term, margin-wide subsidence is controlled by slab dynamic processes, such as slab rollback. Such processes could also be responsible for the aseismic character of the subduction megathrust

    Ongoing tectonic subsidence in the Lesser Antilles subduction zone

    No full text
    International audienceGeological estimates of vertical motions in the central part of the Lesser Antilles show subsidence on timescales ranging from 125.000 to 100 years, which has been interpreted to be caused by interseismic locking along the subduction megathrust. However, horizontal GNSS velocities show that the Lesser Antilles subduction interface is currently building up little to no elastic strain. Here we present new present-day vertical velocities for the Lesser Antilles islands and explore the link between short- and long-term vertical motions and their underlying processes. We find a geodetic subsidence of the Lesser Antilles island arc at 1-2 mm/yr, consistent with the ~100-year trend derived from coral micro-atolls. Using elastic dislocation models, we show that a locked or partially-locked subduction interface would produce uplift of the island arc, opposite to the observations, hence supporting a poorly-coupled subduction. We propose that this long-term, margin-wide subsidence is controlled by slab dynamic processes, such as slab rollback. Such processes could also be responsible for the aseismic character of the subduction megathrust

    Inferring Interseismic Coupling Along the Lesser Antilles Arc: A Bayesian Approach

    No full text
    International audienceThe Lesser Antilles subduction zone is a challenging region when it comes to unraveling its seismogenic behavior. Over the last century, the subduction megathrust has been seismically quiet, with no large thrust event recorded, which raises the question whether this subduction zone is able to produce large interplate earthquakes or not. However, two historical earthquakes in the 19th century, a M 7-8 in 1839 and M 7.5-8.5 in 1843, are proposed to have occurred along the subduction megathrust, although no direct evidence exists. Here we provide a new assessment of interseismic coupling for the Lesser Antilles subduction zone, based on updated Global Positioning System (GPS) velocities and the latest models of the slab geometry and elastic crustal structure. We use a Bayesian approach, allowing us to explore the entire range of plausible models and to provide realistic estimates of interseismic coupling and associated uncertainties. We find low to very low coupling along the entire plate interface, including in the proposed rupture areas of the 1839 and 1843 events, where the sensitivity of our model is high. While a further understanding of temporal variations in interseismic coupling needs to be addressed in future studies, our results indicate that the Lesser Antilles subduction zone is uncoupled, which challenges the idea that the 1839 and 1843 earthquakes were thrust events. The updated GPS velocities of this work now also reveal a small, but detectable amount of along arc extension, consistent with geological observations of active normal faulting within the arc

    A socio-seismology experiment in Haiti

    No full text
    Earthquake risk reduction approaches classically apply a top-down model where scientific information is processed to deliver risk mitigation measures and policies understandable by all, while shielding end-users from the initial, possibly complex, information. Alternative community-based models exist but are rarely applied at a large scale and rely on valuable, but non-scientific, observations and experiences of local populations. In spite of risk reduction efforts based on both approaches, changes in behaviour or policies to reduce earthquake risk are slow or even non-existent, in particular in developing countries. Here we report on the initial stage of a project that aims at testing, through a participatory seismology experiment in Haiti-a country struck by a devastating earthquake in January 2010-whether public or community involvement through the production and usage of seismic information can improve earthquake awareness and, perhaps, induce grassroots protection initiatives. This experiment is made possible by the recent launch of very low-cost, plug-and-play,Raspberry Shakeseismological stations, the relative ease of access to the internet even in developing countries such as Haiti, and the familiarity of all with social networks as a way to disseminate information. Our early findings indicate that 1) the seismic data collected is of sufficient quality for real-time detection and characterization of the regional seismicity, 2) citizens are in demand of earthquake information and trust scientists, even though they appear to see earthquakes through the double lens of tectonics and magic/religion, 3) the motivation of seismic station hosts has allowed data to flow without interruption for more than a year, including through a major political crisis in the Fall of 2019 and the current COVID19 situation. At this early stage of the project, our observations indicate that citizen-seismology in a development context has potential to engage the public while collecting scientifically-relevant seismological information

    Citizen seismology helps decipher the 2021 Haiti earthquake

    Get PDF
    International audienceThe August 14, Mw7.2, Nippes earthquake in Haiti occurred within the same fault zone as its devastating, Mw7.0, 2010 predecessor but struck the country when field access was limited by insecurity and conventional seismometers from the national network were inoperative. A network of citizen seismometers installed in 2019 provided near-field data critical to rapidly understand the mechanism of the mainshock and monitor its aftershock sequence. Their real-time data define two aftershock clusters that coincide with two areas of coseismic slip derived from inversions of conventional seismological and geodetic data. Machine learning applied to data from the citizen seismometer closest to the mainshock allows us to forecast aftershocks as accurately as with the network-derived catalog. This shows the utility of citizen science contributing to the understanding of a major earthquake
    corecore