190 research outputs found

    Local fluctuations in an aging glass

    Full text link
    Polarization fluctuations were measured in nanoscale volumes of a polymer glass during aging following a temperature quench through the glass transition. Statistical properties of the noise were studied in equilibrium and during aging. The noise spectral density had a larger temporal variance during aging, i.e. the noise was more non-Gaussian, demonstrating stronger correlations during aging

    Correlations between the mechanical loss and atomic structure of amorphous TiO2-doped Ta2O5 coatings

    Get PDF
    <p>Highly reflective dielectric mirror coatings are critical components in a range of precision optics applications including frequency combs, optical atomic clocks, precision interferometry and ring laser gyroscopes. A key limitation to the performance in these applications is thermal noise, arising from the mechanical loss of the coatings. The origins of the mechanical loss from these coatings is not well understood.</p> <p>Recent work suggests that the mechanical loss of amorphous Ta2O5 coatings can drop by as much as 40% when it is doped with TiO2. We use a combination of electron diffraction data and atomic modelling using molecular dynamics to probe the atomic structure of these coatings, and examine the correlations between changes in the atomic structure and changes in the mechanical loss of these coatings. Our results show the first correlation between changes in the mechanical loss and experimentally measured changes in the atomic structure resulting from variations in the level of TiO2 doping in TiO2-doped Ta2O5 coatings, in that increased homogeneity at the nearest-neighbour level appears to correlate with reduced mechanical loss. It is demonstrated that subtle but measurable changes in the nearest-neighbour homogeneity in an amorphous material can correlate with significant changes in macroscopic properties.</p&gt

    Dynamical heterogeneity in aging colloidal glasses of Laponite

    Full text link
    Glasses behave as solids due to their long relaxation time; however the origin of this slow response remains a puzzle. Growing dynamic length scales due to cooperative motion of particles are believed to be central to the understanding of both the slow dynamics and the emergence of rigidity. Here, we provide experimental evidence of a growing dynamical heterogeneity length scale that increases with increasing waiting time in an aging colloidal glass of Laponite. The signature of heterogeneity in the dynamics follows from dynamic light scattering measurements in which we study both the rotational and translational diffusion of the disk-shaped particles of Laponite in suspension. These measurements are accompanied by simultaneous microrheology and macroscopic rheology experiments. We find that rotational diffusion of particles slows down at a faster rate than their translational motion. Such decoupling of translational and orientational degrees of freedom finds its origin in the dynamic heterogeneity since rotation and translation probe different length scales in the sample. The macroscopic rheology experiments show that the low frequency shear viscosity increases at a much faster rate than both rotational and translational diffusive relaxation times.Comment: 12 pages, 5 figures, Accepted in Soft Matter 201

    Irreversible reorganization in a supercooled liquid originates from localised soft modes

    Full text link
    The transition of a fluid to a rigid glass upon cooling is a common route of transformation from liquid to solid that embodies the most poorly understood features of both phases1,2,3. From the liquid perspective, the puzzle is to understand stress relaxation in the disordered state. From the perspective of solids, the challenge is to extend our description of structure and its mechanical consequences to materials without long range order. Using computer simulations, we show that the localized low frequency normal modes of a configuration in a supercooled liquid are causally correlated to the irreversible structural reorganization of the particles within that configuration. We also demonstrate that the spatial distribution of these soft local modes can persist in spite of significant particle reorganization. The consequence of these two results is that it is now feasible to construct a theory of relaxation length scales in glass-forming liquids without recourse to dynamics and to explicitly relate molecular properties to their collective relaxation.Comment: Published online: 20 July 2008 | doi:10.1038/nphys1025 Available from http://www.nature.com/nphys/journal/v4/n9/abs/nphys1025.htm

    Time and length scales in supercooled liquids

    Full text link
    We numerically obtain the first quantitative demonstration that development of spatial correlations of mobility as temperature is lowered is responsible for the ``decoupling'' of transport properties of supercooled liquids. This result further demonstrates the necessity of a spatial description of the glass formation and therefore seriously challenges a number of popular alternative theoretical descriptions.Comment: 4 pages, 4 figs; improved version: new refs and discussion

    Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method

    Full text link
    The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a t3/2t^{-3/2} long time tail decay only for non-polar liquid toluene, while the spectra of polar liquids, such as ethanol, water and glycerol, are more congruent with the model of diffusion of particles temporarily trapped in potential wells created by their neighbors. As the method provides the spectrum averaged over ensemble of particle trajectories, the initial non-exponential decay of spin echoes is attributed to a spatial heterogeneity of molecular motion in a bulk of liquid, reflected in distribution of the echo decays for short trajectories. While at longer time intervals, and thus with longer trajectories, heterogeneity is averaged out, giving rise to a spectrum which is explained as a combination of molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic fluctuations.Comment: 8 pages, 6 figur

    Mechanisms of light energy harvesting in dendrimers and hyperbranched polymers

    Get PDF
    Since their earliest synthesis, much interest has arisen in the use of dendritic and structurally allied forms of polymer for light energy harvesting, especially as organic adjuncts for solar energy devices. With the facility to accommodate a proliferation of antenna chromophores, such materials can capture and channel light energy with a high degree of efficiency, each polymer unit potentially delivering the energy of one photon-or more, when optical nonlinearity is involved. To ensure the highest efficiency of operation, it is essential to understand the processes responsible for photon capture and channelling of the resulting electronic excitation. Highlighting the latest theoretical advances, this paper reviews the principal mechanisms, which prove to involve a complex interplay of structural, spectroscopic and electrodynamic properties. Designing materials with the capacity to capture and control light energy facilitates applications that now extend from solar energy to medical photonics. © 2011 by the authors; licensee MDPI, Basel, Switzerland

    Length of stay and associated costs of obesity related hospital admissions in Ireland

    Get PDF
    BACKGROUND: Obesity is the cause of other chronic diseases, psychological problems, obesity shortens the lifespan and puts strain on health systems. The risk associated with childhood obesity in particular, which will accelerate the development of adult morbidity and mortality, has been identified as an emerging public health problem. METHODS: To estimate the length of stay and associated hospital costs for obesity related illnesses a cost of illness study was set up. All discharges from all acute hospitals in the Republic of Ireland from 1997 to 2004 with a principal or secondary diagnostic code for obesity for all children from 6 to 18 years of age and for adults were collected.A discharge frequency was calculated by dividing obesity related discharges by the total number of diagnoses (principal and secondary) for each year. The hospital costs related to obesity was calculated based on the total number of days care. RESULTS: The discharge frequency of obesity related conditions increased from 1.14 in 1997 to 1.49 in 2004 for adults and from 0.81 to 1.37 for children. The relative length of stay (number of days in care for obesity related conditions per 1000 days of hospital care given) increased from 1.47 in 1997 to 4.16 in 2004 for children and from 3.68 in 1997 to 6.74 in 2004 for adults.Based on the 2001 figures for cost per inpatient bed day, the annual hospital cost was calculated to be 4.4 Euromillion in 1997, increasing to 13.3 Euromillion in 2004. At a 20% variable hospital cost the cost ranges from 0.9 Euromillion in 1997 to 2.7 Euromillion in 2004; a 200% increase. CONCLUSION: The annual increase in the proportion of hospital discharges related to obesity is alarming. This increase is related to a significant increase in economic costs. This paper emphasises the need for action at an early stage of life. Health promotion and primary prevention of obesity should be high on the political agenda

    Parental socioeconomic position and development of overweight in adolescence: longitudinal study of Danish adolescents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An inverse social gradient in overweight among adolescents has been shown in developed countries, but few studies have examined whether weight gain and the development of overweight differs among adolescents from different socioeconomic groups in a longitudinal study. The objective was to identify the possible association between parental socioeconomic position, weight change and the risk of developing overweight among adolescents between the ages 15 to 21.</p> <p>Methods</p> <p>Prospective cohort study conducted in Denmark with baseline examination in 1996 and follow-up questionnaire in 2003 with a mean follow-up time of 6.4 years. A sample of 1,656 adolescents participated in both baseline (mean age 14.8) and follow-up (mean age 21.3). Of these, 1,402 had a body mass index (BMI = weight/height<sup>2</sup>kg/m<sup>2</sup>) corresponding to a value below 25 at baseline when adjusted for age and gender according to guidelines from International Obesity Taskforce, and were at risk of developing overweight during the study period. The exposure was parental occupational status. The main outcome measures were change in BMI and development of overweight (from BMI < 25 to BMI > = 25).</p> <p>Results</p> <p>Average BMI increased from 21.3 to 22.7 for girls and from 20.6 to 23.6 in boys during follow-up. An inverse social gradient in overweight was seen for girls at baseline and follow-up and for boys at follow-up. In the full population there was a tendency to an inverse social gradient in the overall increase in BMI for girls, but not for boys. A total of 13.4% developed overweight during the follow-up period. Girls of lower parental socioeconomic position had a higher risk of developing overweight (OR's between 4.72; CI 1.31 to 17.04 and 2.03; CI 1.10-3.74) when compared to girls of high parental socioeconomic position. A tendency for an inverse social gradient in the development of overweight for boys was seen, but it did not meet the significance criteria</p> <p>Conclusions</p> <p>The levels of overweight and obesity among adolescents are high and continue to rise. Results from this study suggest that the inverse social gradient in overweight becomes steeper for girls and emerges for boys in late adolescence (age span 15 to 21 years). Late adolescence seems to be an important window of opportunity in reducing the social inequality in overweight among Danish adolescents.</p
    corecore