88 research outputs found

    Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches

    Get PDF
    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.Fil: Romanowski, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; ArgentinaFil: Garavaglia, Matías Javier. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goya, María Eugenia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andres. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Evolution of Susceptibility to Ingested Double-Stranded RNAs in Caenorhabditis Nematodes

    Get PDF
    International audienceBACKGROUND: The nematode Caenorhabditis elegans is able to take up external double-stranded RNAs (dsRNAs) and mount an RNA interference response, leading to the inactivation of specific gene expression. The uptake of ingested dsRNAs into intestinal cells has been shown to require the SID-2 transmembrane protein in C. elegans. By contrast, C. briggsae was shown to be naturally insensitive to ingested dsRNAs, yet could be rendered sensitive by transgenesis with the C. elegans sid-2 gene. Here we aimed to elucidate the evolution of the susceptibility to external RNAi in the Caenorhabditis genus. PRINCIPAL FINDINGS: We study the sensitivity of many new species of Caenorhabditis to ingested dsRNAs matching a conserved actin gene sequence from the nematode Oscheius tipulae. We find ample variation in the Caenorhabditis genus in the ability to mount an RNAi response. We map this sensitivity onto a phylogenetic tree, and show that sensitivity or insensitivity have evolved convergently several times. We uncover several evolutionary losses in sensitivity, which may have occurred through distinct mechanisms. We could render C. remanei and C. briggsae sensitive to ingested dsRNAs by transgenesis of the Cel-sid-2 gene. We thus provide tools for RNA interference studies in these species. We also show that transgenesis by injection is possible in many Caenorhabditis species. CONCLUSIONS: The ability of animals to take up dsRNAs or to respond to them by gene inactivation is under rapid evolution in the Caenorhabditis genus. This study provides a framework and tools to use RNA interference and transgenesis in various Caenorhabditis species for further comparative and evolutionary studies

    The Influence of pCO2 and Temperature on Gene Expression of Carbon and Nitrogen Pathways in Trichodesmium IMS101

    Get PDF
    Growth, protein amount, and activity levels of metabolic pathways in Trichodesmium are influenced by environmental changes such as elevated pCO2 and temperature. This study examines changes in the expression of essential metabolic genes in Trichodesmium grown under a matrix of pCO2 (400 and 900 µatm) and temperature (25 and 31°C). Using RT-qPCR, we studied 21 genes related to four metabolic functional groups: CO2 concentrating mechanism (bicA1, bicA2, ccmM, ccmK2, ccmK3, ndhF4, ndhD4, ndhL, chpX), energy metabolism (atpB, sod, prx, glcD), nitrogen metabolism (glnA, hetR, nifH), and inorganic carbon fixation and photosynthesis (rbcL, rca, psaB, psaC, psbA). nifH and most photosynthetic genes exhibited relatively high abundance and their expression was influenced by both environmental parameters. A two to three orders of magnitude increase was observed for glnA and hetR only when both pCO2 and temperature were elevated. CO2 concentrating mechanism genes were not affected by pCO2 and temperature and their expression levels were markedly lower than that of the nitrogen metabolism and photosynthetic genes. Many of the CO2 concentrating mechanism genes were co-expressed throughout the day. Our results demonstrate that in Trichodesmium, CO2 concentrating mechanism genes are constitutively expressed. Co-expression of genes from different functional groups were frequently observed during the first half of the photoperiod when oxygenic photosynthesis and N2 fixation take place, pointing at the tight and complex regulation of gene expression in Trichodesmium. Here we provide new data linking environmental changes of pCO2 and temperature to gene expression in Trichodesmium. Although gene expression indicates an active metabolic pathway, there is often an uncoupling between transcription and enzyme activity, such that transcript level cannot usually be directly extrapolated to metabolic activity

    Protocol for the Cognitive Interventions and Nutritional Supplements (CINS) trial: A randomized controlled multicenter trial of a brief intervention (BI) versus a BI plus cognitive behavioral treatment (CBT) versus nutritional supplements for patients with long-lasting muscle and back pain

    Get PDF
    Background: Brief intervention programs are clinically beneficial, and cost efficient treatments for low back pain, when offered at 8-12 weeks, compared with treatment as usual. However, about 30% of the patients do not return to work. The European Guidelines for treatment of chronic low back pain recommends Cognitive Behavioral Therapy (CBT), but conclude that further research is needed to evaluate the effectiveness of CBT for chronic low back pain. Methods/Design: The aim of the multicenter CINS trial (Cognitive Interventions and Nutritional Supplements) is to compare the effectiveness of 4 different interventions; Brief Intervention, Brief Intervention and CBT, Brief Intervention and nutritional supplements of seal oil, and Brief Intervention and nutritional supplements of soy oil. All participants will be randomly assigned to the interventions. The nutritional supplements will be tested in a double blind design. 400 patients will be recruited from a population of chronic low back pain patients that have been sick listed for 2-10 months. Four outpatient clinics, located in different parts of Norway, will participate in recruitment and treatment of the patients. The Brief Intervention is a one session cognitive, clinical examination program based on a non-injury model, where return to normal activity and work is the main goal, and is followed by two booster sessions. The CBT is a tailored treatment involving 7 sessions, following a detailed manual. The nutritional supplements consist of a dosage of 10 grams of either soy or seal oil (capsules) per day for 3 months, administered in a double blind design. All patients will be followed up with questionnaires after 3, 6 and 12 months, while sick leave data will be collected up to at least 24 months after randomization. The primary outcome of the study is sick leave and will be based on register data from the National Insurance Administration. Secondary outcomes include self-reported data on disability, pain, and psychological variables. Conclusions: To our knowledge, the CINS trial will be the largest, randomized trial of psychological and nutritional interventions for chronic low back pain patients to date. It will provide important information regarding the effectiveness of CBT and seal oil for chronic low back pain patients

    Zwei Horazfragen

    No full text

    Perikeiromene 96 - 100

    No full text

    Der Mimus von Oxyrhynchos

    No full text
    corecore