67 research outputs found

    Ecologically Appropriate Xenobiotics Induce Cytochrome P450s in Apis mellifera

    Get PDF
    BACKGROUND: Honey bees are exposed to phytochemicals through the nectar, pollen and propolis consumed to sustain the colony. They may also encounter mycotoxins produced by Aspergillus fungi infesting pollen in beebread. Moreover, bees are exposed to agricultural pesticides, particularly in-hive acaricides used against the parasite Varroa destructor. They cope with these and other xenobiotics primarily through enzymatic detoxificative processes, but the regulation of detoxificative enzymes in honey bees remains largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS: We used several approaches to ascertain effects of dietary toxins on bee susceptibility to synthetic and natural xenobiotics, including the acaricide tau-fluvalinate, the agricultural pesticide imidacloprid, and the naturally occurring mycotoxin aflatoxin. We administered potential inducers of cytochrome P450 enzymes, the principal biochemical system for Phase 1 detoxification in insects, to investigate how detoxification is regulated. The drug phenobarbital induces P450s in many insects, yet feeding bees with phenobarbital had no effect on the toxicity of tau-fluvalinate, a pesticide known to be detoxified by bee P450s. Similarly, no P450 induction, as measured by tau-fluvalinate tolerance, occurred in bees fed xanthotoxin, salicylic acid, or indole-3-carbinol, all of which induce P450s in other insects. Only quercetin, a common pollen and honey constituent, reduced tau-fluvalinate toxicity. In microarray comparisons no change in detoxificative gene expression was detected in phenobarbital-treated bees. However, northern blot analyses of guts of bees fed extracts of honey, pollen and propolis showed elevated expression of three CYP6AS P450 genes. Diet did not influence tau-fluvalinate or imidacloprid toxicity in bioassays; however, aflatoxin toxicity was higher in bees consuming sucrose or high-fructose corn syrup than in bees consuming honey. CONCLUSIONS/SIGNIFICANCE: These results suggest that regulation of honey bee P450s is tuned to chemicals occurring naturally in the hive environment and that, in terms of toxicological capacity, a diet of sugar is not equivalent to a diet of honey

    Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze

    Get PDF
    Pesticides, including neonicotinoids, typically target pest insects by being neurotoxic. Inadvertent exposure to foraging insect pollinators is usually sub-lethal, but may affect cognition. One cognitive trait, spatial working memory, may be important in avoiding previously-visited flowers and other spatial tasks such as navigation. To test this, we investigated the effect of acute thiamethoxam exposure on spatial working memory in the bumblebee Bombus terrestris, using an adaptation of the radial-arm maze (RAM). We first demonstrated that bumblebees use spatial working memory to solve the RAM by showing that untreated bees performed significantly better than would be expected if choices were random or governed by stereotyped visitation rules. We then exposed bees to either a high sub-lethal positive control thiamethoxam dose (2.5ng-1 bee), or one of two low doses (0.377 or 0.091ng-1) based on estimated field-realistic exposure. The high dose caused bees to make more and earlier spatial memory errors and take longer to complete the task than unexposed bees. For the low doses, the negative effects were smaller but statistically significant, and dependent on bee size. The spatial working memory impairment shown here has the potential to harm bees exposed to thiamethoxam, through possible impacts on foraging efficiency or homing

    Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps

    Get PDF
    It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines

    Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae

    Get PDF
    International audienceBACKGROUND: The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. METHODOLOGY/FINDING: Five days after their emergence, honeybees were divided in 6 experimental groups: (i) uninfected controls, (ii) infected with N. ceranae, (iii) uninfected and exposed to fipronil, (iv) uninfected and exposed to thiacloprid, (v) infected with N. ceranae and exposed 10 days post-infection (p.i.) to fipronil, and (vi) infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. CONCLUSIONS/SIGNIFICANCE: After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the increasing prevalence of N. ceranae with high pesticide content in beehives may contribute to colony depopulation

    Imidacloprid-Induced Impairment of Mushroom Bodies and Behavior of the Native Stingless Bee Melipona quadrifasciata anthidioides

    Get PDF
    Declines in pollinator colonies represent a worldwide concern. The widespread use of agricultural pesticides is recognized as a potential cause of these declines. Previous studies have examined the effects of neonicotinoid insecticides such as imidacloprid on pollinator colonies, but these investigations have mainly focused on adult honey bees. Native stingless bees (Hymenoptera: Apidae: Meliponinae) are key pollinators in neotropical areas and are threatened with extinction due to deforestation and pesticide use. Few studies have directly investigated the effects of pesticides on these pollinators. Furthermore, the existing impact studies did not address the issue of larval ingestion of contaminated pollen and nectar, which could potentially have dire consequences for the colony. Here, we assessed the effects of imidacloprid ingestion by stingless bee larvae on their survival, development, neuromorphology and adult walking behavior. Increasing doses of imidacloprid were added to the diet provided to individual worker larvae of the stingless bee Melipona quadrifasciata anthidioides throughout their development. Survival rates above 50% were only observed at insecticide doses lower than 0.0056 µg active ingredient (a.i.)/bee. No sublethal effect on body mass or developmental time was observed in the surviving insects, but the pesticide treatment negatively affected the development of mushroom bodies in the brain and impaired the walking behavior of newly emerged adult workers. Therefore, stingless bee larvae are particularly susceptible to imidacloprid, as it caused both high mortality and sublethal effects that impaired brain development and compromised mobility at the young adult stage. These findings demonstrate the lethal effects of imidacloprid on native stingless bees and provide evidence of novel serious sublethal effects that may compromise colony survival. The ecological and economic importance of neotropical stingless bees as pollinators, their susceptibility to insecticides and the vulnerability of their larvae to insecticide exposure emphasize the importance of studying these species

    An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems

    Get PDF
    New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous WIA in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little, while not much new information has been gathered on soil organisms. The impact on marine coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal classneonicotinoids and fipronil. , withContinued large scale – mostly prophylactic – use of these persistent organochlorine pesticides has the potential to greatly decreasecompletely eliminate populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates, and their deleterious impacts on growth, reproduction and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015)

    Purine metabolism in Echinococcus multilocularis

    No full text
    International audienceThe activities of the enzymes in Echinococcus multilocularis metacestodes involved in purine salvage were studied by HPLC. As in most parasites, this cestode relies entirely on salvage of preformed bases and nucleosides for its purine requirement. Therefore, these enzymes may be targets for drugs in the chemotherapeutic treatment of diseases caused by this parasite. The animals used in this study were gerbils (Meriones unguiculatus). Enzyme activities from sera and hepatic tissue in control and infected animals were similar with the exception of adenine phosphoribosyltransferase which showed an activity 4-fold greater in the serum from control than in serum from infected animals. In the parasite, adenine and hypoxanthine-guanine phosphoribosyltransferases and adenosine deaminase had the highest activities. Therefore, in E. multilocularis metacestodes, this pathway seems to be important for the parasite's metabolism
    corecore