123 research outputs found

    Speleothem record of mild and wet mid-Pleistocene climate in northeast Greenland

    Get PDF
    The five interglacials before the Mid-Brunhes Event (MBE) [c.430 thousand years (ka) ago] are generally considered to be globally cooler than those post-MBE. Inhomogeneities exist regionally, however, which suggest that the Arctic was warmer than present during Marine Isotope Stage (MIS) 15a. Using the first speleothem record for the High Arctic, we investigate the climatic response of northeast Greenland between c.588 and c.549 ka ago. Our results indicate an enhanced warmth of at least +3.5 degrees C relative to the present, leading to permafrost thaw and increased precipitation. We find that delta O-18 of precipitation was at least 3 parts per thousand higher than today and recognize two local cooling events (c.571 and c.594 ka ago) thought to be caused by freshwater forcing. Our results are important for improving understanding of the regional climatic response leading up to the MBE and specifically provide insights into the climatic response of a warmer Arctic

    Climate and structure of the 8.2 ka event reconstructed from three speleothems from Germany

    Full text link
    The most pronounced climate anomaly of the Holocene was the 8.2 ka cooling event. We present new 230Th/U-ages as well as high-resolution stable isotope and trace element data from three stalagmitesfrom two different cave systems in Germany, which provide important information about the structure and climate variability of the 8.2 ka event in central Europe. In all three speleothems, the 8.2 ka event is clearly recorded as a pronounced negative excursion of the {\delta}18O values and can be divided into a 'whole event' and a 'central event'. All stalagmites show a similar structure of the event with a short negative excursion prior to the 'central event', which marks the beginning of the 'whole event'. The timing and duration of the 8.2.ka event are different for the individual records, which may, however, be related to dating uncertainties. Whereas stalagmite Bu4 from Bunker Cave also shows a negative anomaly in the {\delta}13C values and Mg content during the event, the two speleothems from the Herbstlabyrinth cave system do not show distinct peaks in the other proxies. This may suggest that the speleothem {\delta}18O values recorded in the three stalagmites do not primarily reflect climate change at the cave site, but rather large-scale changes in the North Atlantic. This is supported by comparison with climate modelling data, which suggest that the negative peak in the speleothem {\delta}18O values is mainly due to lower {\delta}18O values of precipitation above the cave and that temperature only played a minor role. Alternatively, the other proxies may not be as sensitive as {\delta}18O values to record this centennial-scale cooling event. This may particularly be the case for speleothem {\delta}13C values as suggested by comparison with a climate modelling study simulating vegetation changes in Europe during the 8.2 ka event. ..

    The magnesium isotope record of cave carbonate archives

    Get PDF
    Here we explore the potential of magnesium (δ<sup>26</sup>Mg) isotope time-series data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco), the warm-temperate (Germany), the equatorial-humid (Peru) and the cold-humid (Austria) climate zones. Changes in the calcite magnesium isotope signature with time are compared against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and disequilibrium processes governs the δ<sup>26</sup>Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rainwater or snow as well as soil and host rock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ<sup>26</sup>Mg values (GDA: −4.26 ± 0.07‰ and HK3: −4.17 ± 0.15‰), and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value of all stalagmites (NC-A and NC-B δ<sup>26</sup>Mg: −3.96 ± 0.04‰) but only minor variations in Mg-isotope composition, which is consistent with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ<sup>26</sup>Mg: −4.01 ± 0.07‰; BU 4 mean δ<sup>26</sup>Mg: −4.20 ± 0.10‰) suggest changes in outside air temperature was the principal driver rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: −3.00 ± 0.73‰; SPA 59: −3.70 ± 0.43‰) are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity and weathering balance. Several δ<sup>26</sup>Mg values of the Austrian and two δ<sup>26</sup>Mg values of the German speleothems are shifted to higher values due to sampling in detrital layers (Mg-bearing clay minerals) of the speleothems. The data and their interpretation shown here highlight the potential but also the limitations of the magnesium isotope proxy applied in continental climate research. An obvious potential lies in its sensitivity for even subtle changes in soil-zone parameters, a hitherto rather poorly understood but extremely important component in cave archive research. Limitations are most obvious in the low resolution and high sample amount needed for analysis. Future research should focus on experimental and conceptual aspects including quantitative and well-calibrated leaching and precipitation experiments

    Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bajnai, D., Guo, W., Spötl, C., Coplen, T. B., Methner, K., Löffler, N., Krsnik, E., Gischler, E., Hansen, M., Henkel, D., Price, G. D., Raddatz, J., Scholz, D., & Fiebig, J. Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures. Nature Communications, 11(1), (2020): 4005, doi:10.1038/s41467-020-17501-0.Surface temperature is a fundamental parameter of Earth’s climate. Its evolution through time is commonly reconstructed using the oxygen isotope and the clumped isotope compositions of carbonate archives. However, reaction kinetics involved in the precipitation of carbonates can introduce inaccuracies in the derived temperatures. Here, we show that dual clumped isotope analyses, i.e., simultaneous ∆47 and ∆48 measurements on the single carbonate phase, can identify the origin and quantify the extent of these kinetic biases. Our results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Further, we show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias. Analysis of a belemnite rostrum implies that it precipitated near isotopic equilibrium and confirms the warmer-than-present temperatures during the Early Cretaceous at southern high latitudes.This work became possible through DFG grant “INST 161/871-1” and the Investment in Science Fund at Woods Hole Oceanographic Institution. The authors would like to thank Sven Hofmann and Manuel Schumann for their assistance in the joint Goethe University – Senckenberg BiK-F Stable Isotope Facility at the Institute of Geosciences, Goethe University Frankfurt. K.M. acknowledges funding through “DFG ME 4955/1-1”, E.K. through “DFG MU 2845/6-1”, D.S. through “DFG SCHO 1274/8-1” and “DFG SCHO 1274/11-1”, and M.H. through “DFG HA 8694/1-1”. C.S. acknowledges funding from the University of Innsbruck. A review of the manuscript by David Evans on behalf of the USGS is acknowledged

    A unique Valanginian paleoenvironment at an iron ore deposit near ZengƑvárkony (Mecsek Mts, South Hungary), and a possible genetic model

    Get PDF
    Abstract The spatially restricted Early Valanginian iron ore (limonite) and manganese deposit at ZengĂ”vĂĄrkony (Mecsek Mts, southern Hungary) contains a rich, strongly limonitized, remarkably large-sized (specimens are 30–70% larger than those at their type localities) brachiopod-dominated (mainly Lacunosella and Nucleata) megafauna and a diverse crustacean microfauna, which indicates a shallow, nutrient-rich environment possibly linked to an uplifted block, and/or a hydrothermal vent

    Deducing the source and composition of rare earth mineralising fluids in carbonatites: insights from isotopic (C, O, 87Sr/86Sr) data from Kangankunde, Malawi

    Get PDF
    This is the final version of the article. Available from Springer Verlag via the DOI in this record.Carbonatites host some of the largest and highest grade rare earth element (REE) deposits but the composition and source of their REE-mineralising fluids remains enigmatic. Using C, O and 87Sr/86Sr isotope data together with major and trace element compositions for the REE-rich Kangankunde carbonatite (Malawi), we show that the commonly observed, dark brown, Fe-rich carbonatite that hosts REE minerals in many carbonatites is decoupled from the REE mineral assemblage. REE-rich ferroan dolomite carbonatites, containing 8–15 wt% REE2O3, comprise assemblages of monazite-(Ce), strontianite and baryte forming hexagonal pseudomorphs after probable burbankite. The 87Sr/86Sr values (0.70302–0.70307) affirm a carbonatitic origin for these pseudomorph-forming fluids. Carbon and oxygen isotope ratios of strontianite, representing the REE mineral assemblage, indicate equilibrium between these assemblages and a carbonatite-derived, deuteric fluid between 250 and 400 °C (ή18O + 3 to + 5‰VSMOW and ή13C − 3.5 to − 3.2‰VPDB). In contrast, dolomite in the same samples has similar ή13C values but much higher ή18O, corresponding to increasing degrees of exchange with low-temperature fluids (< 125 °C), causing exsolution of Fe oxides resulting in the dark colour of these rocks. REE-rich quartz rocks, which occur outside of the intrusion, have similar ή18O and 87Sr/86Sr to those of the main complex, indicating both are carbonatite-derived and, locally, REE mineralisation can extend up to 1.5 km away from the intrusion. Early, REE-poor apatite-bearing dolomite carbonatite (beforsite: ή18O + 7.7 to + 10.3‰ and ή13C −5.2 to −6.0‰; 87Sr/86Sr 0.70296–0.70298) is not directly linked with the REE mineralisation.This project was funded by the UK Natural Environment Research Council (NERC) SoS RARE project (NE/M011429/1) and by NIGL (NERC Isotope Geoscience Laboratory) Project number 20135
    • 

    corecore