1,612 research outputs found

    Magnetic and transport properties of the spin-state disordered oxide La0.8Sr0.2Co_{1-x}Rh_xO_{3-\delta}

    Get PDF
    We report measurements and analysis of magnetization, resistivity and thermopower of polycrystalline samples of the perovskite-type Co/Rh oxide La0.8_{0.8}Sr0.2_{0.2}Co1x_{1-x}Rhx_xO3δ_{3-\delta}. This system constitutes a solid solution for a full range of xx,in which the crystal structure changes from rhombohedral to orthorhombic symmetry with increasing Rh content xx. The magnetization data reveal that the magnetic ground state immediately changes upon Rh substitution from ferromagnetic to paramagnetic with increasing xx near 0.25, which is close to the structural phase boundary. We find that one substituted Rh ion diminishes the saturation moment by 9 μB\mu_B, which implies that one Rh3+^{3+} ion makes a few magnetic Co3+^{3+} ions nonmagnetic (the low spin state), and causes disorder in the spin state and the highest occupied orbital. In this disordered composition (0.05x0.750.05\le x \le 0.75), we find that the thermopower is anomalously enhanced below 50 K. In particular, the thermopower of xx=0.5 is larger by a factor of 10 than those of xx=0 and 1, and the temperature coefficient reaches 4 μ\muV/K2^2 which is as large as that of heavy-fermion materials such as CeRu2_2Si2_2.Comment: 8 pages, 6 figures, accepted to Phys. Rev.

    Multilevel Analysis of Oscillation Motions in Active Regions of the Sun

    Full text link
    We present a new method that combines the results of an oscillation study made in optical and radio observations. The optical spectral measurements in photospheric and chromospheric lines of the line-of-sight velocity were carried out at the Sayan Solar Observatory. The radio maps of the Sun were obtained with the Nobeyama Radioheliograph at 1.76 cm. Radio sources associated with the sunspots were analyzed to study the oscillation processes in the chromosphere-corona transition region in the layer with magnetic field B=2000 G. A high level of instability of the oscillations in the optical and radio data was found. We used a wavelet analysis for the spectra. The best similarities of the spectra of oscillations obtained by the two methods were detected in the three-minute oscillations inside the sunspot umbra for the dates when the active regions were situated near the center of the solar disk. A comparison of the wavelet spectra for optical and radio observations showed a time delay of about 50 seconds of the radio results with respect to optical ones. This implies a MHD wave traveling upward inside the umbral magnetic tube of the sunspot. Besides three-minute and five-minute ones, oscillations with longer periods (8 and 15 minutes) were detected in optical and radio records.Comment: 17 pages, 9 figures, accepted to Solar Physics (18 Jan 2011). The final publication is available at http://www.springerlink.co

    Solar Sources of Severe Space Weather

    Get PDF
    Severe space weather is characterized by intense particle radiation from the Sun and severe geomagnetic storm caused by magnetized solar plasma arriving at Earth. Intense particle radiation is almost always caused by coronal mass ejections (CMEs) traveling from the Sun at super-Alfvenic speeds leading to fast-mode MHD shocks and particle acceleration by the shocks. When a CME arrives at Earth, it can interact with Earth's magnetopause resulting in solar plasma entry into the magnetosphere and a geomagnetic storm depending on the magnetic structure of the CME. Particle radiation starts affecting geospace as soon as the CMEs leave the Sun and the geospace may be immersed in the radiation for several days. On the other hand, the geomagnetic storm happens only upon arrival of the CME at Earth. The requirements for the production of particles and magnetic storms by CMEs are different in a number of respects: solar source location, CME magnetic structure, conditions in the ambient solar wind, and shock-driving ability of CMEs. Occasionally, intense geomagnetic storms are caused by corotating interaction regions (CIRs) that form in the interplanetary space when the fast solar wind from coronal holes overtakes the slow wind from the quiet regions. CIRs also accelerate particles, but when they reach several AU from the Sun, so their impact on Earth's space environment is not significant. In addition to these plasma effects, solar flares that accompany CMEs also produce excess ionization in the ionosphere causing sudden ionospheric disturbances. This paper highlights these space weather effects using space weather events observed by space and ground based instruments during of solar cycles 23 and 24

    High sensitivity and multifunctional micro-Hall sensors fabricated using InAlSb/InAsSb/InAlSb heterostructures

    Get PDF
    Further diversification of Hall sensor technology requires development of materials with high electron mobility and an ultrathin conducting layer very close to the material's surface. Here, we describe the magnetoresistive properties of micro-Hall devices fabricated using InAlSb/InAsSb/InAlSb heterostructures where electrical conduction was confined to a 30 nm-InAsSb two-dimensional electron gas layer. The 300 K electron mobility and sheet carrier concentration were 36 500 cm(2) V-1 s(-1) and 2.5 x 10(11) cm(-2), respectively. The maximum current-related sensitivity was 2 750 V A(-1) T-1, which was about an order of magnitude greater than AlGaAs/InGaAs pseudomorphic heterostructures devices. Photolithography was used to fabricate 1 mu m x 1 mu m Hall probes, which were installed into a scanning Hall probe microscope and used to image the surface of a hard disk

    Fast Time Structure During Transient Microwave Brightenings: Evidence for Nonthermal Processes

    Get PDF
    Transient microwave brightenings (TMBs) are small-scale energy releases from the periphery of sunspot umbrae, with a flux density two orders of magnitude smaller than that from a typical flare. Gopalswamy et al (1994) first reported the detection of the TMBs and it was pointed out that the radio emission implied a region of very high magnetic field so that the emission mechanism has to be gyroresonance or nonthermal gyrosynchrotron, but not free-free emission. It was not possible to decide between gyroresonance and gyrosynchrotron processes because of the low time resolution (30 s) used in the data analysis. We have since performed a detailed analysis of the Very Large Array data with full time resolution (3.3 s) at two wavelengths (2 and 3.6 cm) and we can now adequately address the question of the emission mechanism of the TMBs. We find that nonthermal processes indeed take place during the TMBs. We present evidence for nonthermal emission in the form of temporal and spatial structure of the TMBs. The fast time structure cannot be explained by a thermodynamic cooling time and therefore requires a nonthermal process. Using the physical parameters obtained from X-ray and radio observations, we determine the magnetic field parameters of the loop and estimate the energy released during the TMBs. The impulsive components of TMBs imply an energy release rate of 1.3 x 10^22 erg/s so that the thermal energy content of the TMBs could be less than 10^24 erg.Comment: 15 pages (Latex), 4 figures (eps). ApJ Letters in press (1997

    First-principles study on the origin of large thermopower in hole-doped LaRhO3 and CuRhO2

    Full text link
    Based on first-principles calculations, we study the origin of the large thermopower in Ni-doped LaRhO3 and Mg-doped CuRhO2. We calculate the band structure and construct the maximally localized Wannier functions from which a tight binding Hamiltonian is obtained. The Seebeck coefficient is calculated within the Boltzmann's equation approach using this effective Hamiltonian. For LaRhO3, we find that the Seebeck coefficient remains nearly constant within a large hole concentration range, which is consistent with the experimental observation. For CuRhO2, the overall temperature dependence of the calculated Seebeck coefficient is in excellent agreement with the experiment. The origin of the large thermopower is discussed.Comment: 7 pages, to be published J. Phys.: Cond. Matt., Proc. QSD 200

    Exclusion of the fittest predicts microbial community diversity in fluctuating environments

    Get PDF
    Microorganisms live in environments that inevitably fluctuate between mild and harsh conditions. As harsh conditions may cause extinctions, the rate at which fluctuations occur can shape microbial communities and their diversity, but we still lack an intuition on how. Here, we build a mathematical model describing two microbial species living in an environment where substrate supplies randomly switch between abundant and scarce. We then vary the rate of switching as well as different properties of the interacting species, and measure the probability of the weaker species driving the stronger one extinct. We find that this probability increases with the strength of demographic noise under harsh conditions and peaks at either low, high, or intermediate switching rates depending on both species’ ability to withstand the harsh environment. This complex relationship shows why finding patterns between environmental fluctuations and diversity has historically been difficult. In parameter ranges where the fittest species was most likely to be excluded, however, the beta diversity in larger communities also peaked. In sum, how environmental fluctuations affect interactions between a few species pairs predicts their effect on the beta diversity of the whole community

    Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem

    Full text link
    The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta < m_e/m_p, the waves propagate as inertial Alfven waves. In the presence of strong spatial gradients, these generate field-aligned electric fields that can accelerate electrons to energies on the order of 10 keV and above, including by repeated interactions between electrons and wavefronts. Secondly, when they reflect and mode-convert in the chromosphere, a cascade to high wavenumbers may develop. This will also accelerate electrons by turbulence, in a medium with a locally high electron number density. This concept, which bridges MHD-based and particle-based views of a flare, provides an interpretation of the recently-observed rapid variations of the line-of-sight component of the photospheric magnetic field across the flare impulsive phase, and offers solutions to some perplexing flare problems, such as the flare "number problem" of finding and resupplying sufficient electrons to explain the impulsive-phase hard X-ray emission.Comment: 31 pages, 6 figure
    corecore