Transient microwave brightenings (TMBs) are small-scale energy releases from
the periphery of sunspot umbrae, with a flux density two orders of magnitude
smaller than that from a typical flare. Gopalswamy et al (1994) first reported
the detection of the TMBs and it was pointed out that the radio emission
implied a region of very high magnetic field so that the emission mechanism has
to be gyroresonance or nonthermal gyrosynchrotron, but not free-free emission.
It was not possible to decide between gyroresonance and gyrosynchrotron
processes because of the low time resolution (30 s) used in the data analysis.
We have since performed a detailed analysis of the Very Large Array data with
full time resolution (3.3 s) at two wavelengths (2 and 3.6 cm) and we can now
adequately address the question of the emission mechanism of the TMBs. We find
that nonthermal processes indeed take place during the TMBs. We present
evidence for nonthermal emission in the form of temporal and spatial structure
of the TMBs. The fast time structure cannot be explained by a thermodynamic
cooling time and therefore requires a nonthermal process. Using the physical
parameters obtained from X-ray and radio observations, we determine the
magnetic field parameters of the loop and estimate the energy released during
the TMBs. The impulsive components of TMBs imply an energy release rate of 1.3
x 10^22 erg/s so that the thermal energy content of the TMBs could be less than
10^24 erg.Comment: 15 pages (Latex), 4 figures (eps). ApJ Letters in press (1997