2,288 research outputs found
Numerical studies of the thermal design sensitivity calculation for a reaction-diffusion system with discontinuous derivatives
The aim of this study is to find a reliable numerical algorithm to calculate thermal design sensitivities of a transient problem with discontinuous derivatives. The thermal system of interest is a transient heat conduction problem related to the curing process of a composite laminate. A logical function which can smoothly approximate the discontinuity is introduced to modify the system equation. Two commonly used methods, the adjoint variable method and the direct differentiation method, are then applied to find the design derivatives of the modified system. The comparisons of numerical results obtained by these two methods demonstrate that the direct differentiation method is a better choice to be used in calculating thermal design sensitivity
On processing development for fabrication of fiber reinforced composite, part 2
Fiber-reinforced composite laminates are used in many aerospace and automobile applications. The magnitudes and durations of the cure temperature and the cure pressure applied during the curing process have significant consequences for the performance of the finished product. The objective of this study is to exploit the potential of applying the optimization technique to the cure cycle design. Using the compression molding of a filled polyester sheet molding compound (SMC) as an example, a unified Computer Aided Design (CAD) methodology, consisting of three uncoupled modules, (i.e., optimization, analysis and sensitivity calculations), is developed to systematically generate optimal cure cycle designs. Various optimization formulations for the cure cycle design are investigated. The uniformities in the distributions of the temperature and the degree with those resulting from conventional isothermal processing conditions with pre-warmed platens. Recommendations with regards to further research in the computerization of the cure cycle design are also addressed
Detecting Mutations in the Mycobacterium tuberculosis Pyrazinamidase Gene pncA to Improve Infection Control and Decrease Drug Resistance Rates in Human Immunodeficiency Virus Coinfection.
Hospital infection control measures are crucial to tuberculosis (TB) control strategies within settings caring for human immunodeficiency virus (HIV)-positive patients, as these patients are at heightened risk of developing TB. Pyrazinamide (PZA) is a potent drug that effectively sterilizes persistent Mycobacterium tuberculosis bacilli. However, PZA resistance associated with mutations in the nicotinamidase/pyrazinamidase coding gene, pncA, is increasing. A total of 794 patient isolates obtained from four sites in Lima, Peru, underwent spoligotyping and drug resistance testing. In one of these sites, the HIV unit of Hospital Dos de Mayo (HDM), an isolation ward for HIV/TB coinfected patients opened during the study as an infection control intervention: circulating genotypes and drug resistance pre- and postintervention were compared. All other sites cared for HIV-negative outpatients: genotypes and drug resistance rates from these sites were compared with those from HDM. HDM patients showed high concordance between multidrug resistance, PZA resistance according to the Wayne method, the two most common genotypes (spoligotype international type [SIT] 42 of the Latino American-Mediterranean (LAM)-9 clade and SIT 53 of the T1 clade), and the two most common pncA mutations (G145A and A403C). These associations were absent among community isolates. The infection control intervention was associated with 58-92% reductions in TB caused by SIT 42 or SIT 53 genotypes (odds ratio [OR] = 0.420, P = 0.003); multidrug-resistant TB (OR = 0.349, P < 0.001); and PZA-resistant TB (OR = 0.076, P < 0.001). In conclusion, pncA mutation typing, with resistance testing and spoligotyping, was useful in identifying a nosocomial TB outbreak and demonstrating its resolution after implementation of infection control measures
GASP II. A MUSE view of extreme ram-pressure stripping along the line of sight: kinematics of the jellyfish galaxy JO201
This paper presents a spatially-resolved kinematic study of the jellyfish
galaxy JO201, one of the most spectacular cases of ram-pressure stripping (RPS)
in the GASP (GAs Stripping Phenomena in Galaxies with MUSE) survey. By studying
the environment of JO201, we find that it is moving through the dense
intra-cluster medium of Abell 85 at supersonic speeds along our line of sight,
and that it is likely accompanied by a small group of galaxies. Given the
density of the intra-cluster medium and the galaxy's mass, projected position
and velocity within the cluster, we estimate that JO201 must so far have lost
~50% of its gas during infall via RPS. The MUSE data indeed reveal a smooth
stellar disk, accompanied by large projected tails of ionised (Halpha) gas,
composed of kinematically cold (velocity dispersion <40km/s) star-forming knots
and very warm (>100km/s) diffuse emission which extend out to at least ~50 kpc
from the galaxy centre. The ionised Halpha-emitting gas in the disk rotates
with the stars out to ~6 kpc but in the disk outskirts becomes increasingly
redshifted with respect to the (undisturbed) stellar disk. The observed
disturbances are consistent with the presence of gas trailing behind the
stellar component, resulting from intense face-on RPS happening along the line
of sight. Our kinematic analysis is consistent with the estimated fraction of
lost gas, and reveals that stripping of the disk happens outside-in, causing
shock heating and gas compression in the stripped tails.Comment: ApJ, revised version after referee comments, 15 pages, 16 figures.
The interactive version of Figure 9 can be viewed at
web.oapd.inaf.it/gasp/publications.htm
Internal lee wave closures : parameter sensitivity and comparison to observations
Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 7997–8019, doi:10.1002/2015JC010892.This paper examines two internal lee wave closures that have been used together with ocean models to predict the time-averaged global energy conversion rate into lee waves and dissipation rate associated with lee waves and topographic blocking: the Garner (2005) scheme and the Bell (1975) theory. The closure predictions in two Southern Ocean regions where geostrophic flows dominate over tides are examined and compared to microstructure profiler observations of the turbulent kinetic energy dissipation rate, where the latter are assumed to reflect the dissipation associated with topographic blocking and generated lee wave energy. It is shown that when applied to these Southern Ocean regions, the two closures differ most in their treatment of topographic blocking. For several reasons, pointwise validation of the closures is not possible using existing observations, but horizontally averaged comparisons between closure predictions and observations are made. When anisotropy of the underlying topography is accounted for, the two horizontally averaged closure predictions near the seafloor are approximately equal. The dissipation associated with topographic blocking is predicted by the Garner (2005) scheme to account for the majority of the depth-integrated dissipation over the bottom 1000 m of the water column, where the horizontally averaged predictions lie well within the spatial variability of the horizontally averaged observations. Simplifications made by the Garner (2005) scheme that are inappropriate for the oceanic context, together with imperfect observational information, can partially account for the prediction-observation disagreement, particularly in the upper water column.National Science Foundation Grant Number: OCE-0960820; Office of Naval Research (ONR) Grant Number: N00014-11-1-0487; Australian Research Council Grant Number: (DE120102927 and CE110001028); National Science and Engineering Research Council of Canada Grant Number: (22R23085)2016-06-1
The detection of airborne transmission of tuberculosis from HIV-infected patients, using an in vivo air sampling model
Background. Nosocomial transmission of tuberculosis remains an important public health problem. We created an in vivo air sampling model to study airborne transmission of tuberculosis from patients coinfected with human immunodeficiency virus (HIV) and to evaluate environmental control measures.
Methods. An animal facility was built above a mechanically ventilated HIV‐tuberculosis ward in Lima, Peru. A mean of 92 guinea pigs were continuously exposed to all ward exhaust air for 16 months. Animals had tuberculin skin tests performed at monthly intervals, and those with positive reactions were removed for autopsy and culture for tuberculosis.
Results. Over 505 consecutive days, there were 118 ward admissions by 97 patients with pulmonary tuberculosis, with a median duration of hospitalization of 11 days. All patients were infected with HIV and constituted a heterogeneous group with both new and existing diagnoses of tuberculosis. There was a wide variation in monthly rates of guinea pigs developing positive tuberculin test results (0%–53%). Of 292 animals exposed to ward air, 159 developed positive tuberculin skin test results, of which 129 had laboratory confirmation of tuberculosis. The HIV‐positive patients with pulmonary tuberculosis produced a mean of 8.2 infectious quanta per hour, compared with 1.25 for HIV‐negative patients with tuberculosis in similar studies from the 1950s. The mean monthly patient infectiousness varied greatly, from production of 0–44 infectious quanta per hour, as did the theoretical risk for a health care worker to acquire tuberculosis by breathing ward air.
Conclusions. HIV‐positive patients with tuberculosis varied greatly in their infectiousness, and some were highly infectious. Use of environmental control strategies for nosocomial tuberculosis is therefore a priority, especially in areas with a high prevalence of both tuberculosis and HIV infection
Directed flow of antiprotons in Au+Au collisions at AGS
Directed flow of antiprotons is studied in Au+Au collisions at a beam
momentum of 11.5A GeV/c. It is shown that antiproton directed flow is
anti-correlated to proton flow. The measured transverse momentum dependence of
the antiproton flow is compared with predictions of the RQMD event generator.Comment: 16 pages, 6 figure
Two-Proton Correlations from 14.6A GeV/c Si+Pb and 11.5A GeV/c Au+Au Central Collisions
Two-proton correlation functions have been measured in Si+Pb collisions at
14.6A GeV/c and Au+Au collisions at 11.5A GeV/c by the E814/E877 collaboration.
Data are compared with predictions of the transport model RQMD and the source
size is inferred from this comparison. Our analysis shows that, for both
reactions, the characteristic size of the system at freeze-out exceeds the size
of the projectile, suggesting that the fireball created in the collision has
expanded. For Au+Au reactions, the observed centrality dependence of the
two-proton correlation function implies that more central collisions lead to a
larger source sizes.Comment: RevTex, 12 pages, 5 figure
Effect of Impurity Scattering on the Nonlinear Microwave Response in High-Tc Superconductors
We theoretically investigate intermodulation distortion in high-Tc
superconductors. We study the effect of nonmagnetic impurities on the real and
imaginary parts of nonlinear conductivity. The nonlinear conductivity is
proportional to the inverse of temperature owing to the dependence of the
damping effect on energy, which arises from the phase shift deviating from the
unitary limit. It is shown that the final-states interaction makes the real
part predominant over the imaginary part. These effects have not been included
in previous theories based on the two-fluid model, enabling a consistent
explanation for the experiments with the rf and dc fields
- …
