25 research outputs found
Analyses of monomeric storage proteins “gliadins” in Iranian bread wheats
A collection of new and obsolete Iranian bread wheat cultivars were characterized for gliadins using acid polyacrylamide gel electrophoresis (A-PAGE). Extensive polymorphism (H) = 0.734 in gliadin patterns was found. A total of 26 band patterns including 13, 8 and 5 different mobility bands were identified, in the zones of ω-, β + γ- and α-gliadins, respectively. There were a few patterns specific to each region and some were common among all the regions. Patterns of α-gliadin C, β + γ-gliadins A, and ω-gliadins H, C and E patterns were significantly higher in temperate and tropical zones. β + γ-gliadin C and ω-gliadin Q were significantly higher in Caspian-cold regions. Variation was observed in gliadins patterns of cultivars grown in different regions in Iran. Individual cultivars showed unique gliadin fingerprints. There were larger variation in ω- and γ + β-gliadins than in α-gliadins. These results may provide complementary information for relating genetic diversity, and quality characterization of Iranian wheat cultivars
JUB1 suppresses Pseudomonas syringae-induced defense responses through accumulation of DELLA proteins
Phytohormones act in concert to coordinate plant growth and the response to environmental cues. Gibberellins (GAs) are growth-promoting hormones that recently emerged as modulators of plant immune signaling. By regulating the stability of DELLA proteins, GAs intersect with the signaling pathways of the classical primary defense hormones, salicylic acid (SA) and jasmonic acid (JA), thereby altering the final outcome of the immune response. DELLA proteins confer resistance to necrotrophic pathogens by potentiating JA signaling and raise the susceptibility to biotrophic pathogens by attenuating the SA pathway. Here, we show that JUB1, a core element of the GA - brassinosteroid (BR) - DELLA regulatory module, functions as a negative regulator of defense responses against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and mediates the crosstalk between growth and immunity
Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermomemory-associated genes and enhances heat stress tolerance in primed and unprimed conditions
We recently reported that the NAC transcription factor JUNGBRUNNEN1 (JUB1; ANAC042) extends longevity and increases tolerance to heat stress in Arabidopsis thaliana when overexpressed, while the opposite is observed in jub1-1 knock-down lines. Here we extend our previous findings by demonstrating that JUB1 also positively regulates plant survival under heat stress when plants were treated by a prior moderate (and non-lethal) temperature regime (so-called priming). We further find that JUB1 shows thermomemory-related expression, similar to two other genes previously reported to be important for thermopriming, i.e., HSFA2, encoding a heat shock factor, and HSA32, encoding a heat shock protein. Our analysis also identifies ASCORBATE PEROXIDASE2 (APX2) and the heat shock protein genes HSP18.2 and HSP21 as thermomemory-expressed genes, revealing them as new candidates for studies to decode the molecular processes controlling thermopriming
Nature Plants
FWN – Publicaties zonder aanstelling Universiteit Leide
Genetic diversity and genetic similarities between Iranian rose species
Wild rose species were collected from different regions of Iran for a rose breeding programme. They included accessions from Rosa persica, R. foetida, R. pimpinellifolia, R. hemisphaerica, R. canina, R. iberica, R. damascena, R. beggeriana, and R. orientalis. Ten microsatellite (simple sequence repeat; SSR) markers were used to analyse the genetic variation among these rose species. The SSR markers amplified alleles in all species, even if they were from different sections within the genus. An unweighted pair group method cluster analysis (UPGMA) based on similarity values revealed five main Groups. The data showed no support for any distinction between R. canina and R. iberica, as all the accessions were placed in one Group, and accessions of these two species were more closely-related to each other within a Province than to accessions of the same species in other Provinces. Accessions of sect. Pimpinellifoliae were combined with plants from sect. Rosa and Cinnamomeae in two different Groups. Genetically, R. persica clustered distinctly from all others, with few alleles shared with the other taxa. We discuss the use of SSR markers for phylogenetic analysis when these markers are amplified in all species of a genu