2,069 research outputs found
Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments
Prime focus spectrograph: Subaru's future
The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project has been endorsed by Japanese community as one of the main future instruments of the Subaru 8.2-meter telescope at Mauna Kea, Hawaii. This optical/near-infrared multi-fiber spectrograph targets cosmology with galaxy surveys, Galactic archaeology, and studies of galaxy/AGN evolution. Taking advantage of Subaru’s wide field of view, which is further extended with the recently completed Wide Field Corrector, PFS will enable us to carry out multi-fiber spectroscopy of 2400 targets within 1.3 degree diameter. A microlens is attached at each fiber entrance for F-ratio transformation into a larger one so that difficulties of spectrograph design are eased. Fibers are accurately placed onto target positions by positioners, each of which consists of two stages of piezo-electric rotary motors, through iterations by using back-illuminated fiber position measurements with a widefield metrology camera. Fibers then carry light to a set of four identical fast-Schmidt spectrographs with three color arms each: the wavelength ranges from 0.38 μm to 1.3 μm will be simultaneously observed with an average resolving power of 3000. Before and during the era of extremely large telescopes, PFS will provide the unique capability of obtaining spectra of 2400 cosmological/astrophysical targets simultaneously with an 8-10 meter class telescope. The PFS collaboration, led by IPMU, consists of USP/LNA in Brazil, Caltech/JPL, Princeton, and JHU in USA, LAM in France, ASIAA in Taiwan, and NAOJ/Subaru
Guandu: planta forrageira para a produção de proteína.
O guandu (Cajanus cajan), leguminosa de origem africana, adaptada a região Tropical, é enfocada no documento apenas quanto a seu emprego na alimentação de bovinos. São apresentadas recomendações de adubação; época de plantio; cálculo de produção; utilização em pastejo e na produção de forragem. O emprego do guandu, introduzido em pastagens de gramíneas ja existentes, é recomendado para a produção de forragem especial e recuperação de solo.bitstream/item/138535/1/COT-21.pdfCNPG
ARCADE: Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission
The Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission
(ARCADE) is a balloon-borne instrument designed to measure the temperature of
the cosmic microwave background at centimeter wavelengths. ARCADE searches for
deviations from a blackbody spectrum resulting from energy releases in the
early universe. Long-wavelength distortions in the CMB spectrum are expected in
all viable cosmological models. Detecting these distortions or showing that
they do not exist is an important step for understanding the early universe. We
describe the ARCADE instrument design, current status, and future plans.Comment: 12 pages, 6 figures. Proceedings of the Fundamental Physics With CMB
workshop, UC Irvine, March 23-25, 2006, to be published in New Astronomy
Review
Inherent and learnt abilities for relative pitch in the vibrotactile domain using the fingertip
This paper reports experimental results concerning relative pitch discrimination. This is defined as the ability to distinguish one musical note as being higher or lower than another. Seventeen participants with normal hearing undertook a pitch discrimination experiment using the fingertip over a 16 session training period with a full baseline test before and after the training sessions. Two sinusoidal tones were presented, each of Is duration separated by a Is gap. A total of 24 tones were chosen to cover 12 intervals ranging from a semi-tone to an octave over the frequency range C3 to B4. The results show a high success rate for relative pitch discrimination with and without training. For intervals of 4 to 12 semitones, the success rates were >70% with or without the 16 training sessions. As a result of training, a significant improvement was found for individual intervals between 9 and 12 semitones when comparing the number of correct responses between pre-training and post-training tests. Comparison of pre- and post-training tests also showed an appreciable and significant improvement for the whole group of 12 intervals. In addition, reaction times to identify relative pitch tended to decrease over the training period
Cosmic shear requirements on the wavelength dependence of telescope point spread functions
Cosmic shear requires high precision measurement of galaxy shapes in the presence of the observational point spread function (PSF) that smears out the image. The PSF must therefore be known for each galaxy to a high accuracy. However, for several reasons, the PSF is usually wavelength dependent; therefore, the differences between the spectral energy distribution of the observed objects introduce further complexity. In this paper, we investigate the effect of the wavelength dependence of the PSF, focusing on instruments in which the PSF size is dominated by the diffraction limit of the telescope and which use broad-band filters for shape measurement. We first calculate biases on cosmological parameter estimation from cosmic shear when the stellar PSF is used uncorrected. Using realistic galaxy and star spectral energy distributions and populations and a simple three-component circular PSF, we find that the colour dependence must be taken into account for the next generation of telescopes. We then consider two different methods for removing the effect: (i) the use of stars of the same colour as the galaxies and (ii) estimation of the galaxy spectral energy distribution using multiple colours and using a telescope model for the PSF. We find that both of these methods correct the effect to levels below the tolerances required for per cent level measurements of dark energy parameters. Comparison of the two methods favours the template-fitting method because its efficiency is less dependent on galaxy redshift than the broad-band colour method and takes full advantage of deeper photometr
Influence of supramolecular forces on the linear viscoelasticity of gluten
Stress relaxation behavior of hydrated gluten networks was investigated by means of rheometry combined with μ-computed tomography (μ-CT) imaging. Stress relaxation behavior was followed over a wide temperature range (0–70 °C). Modulation of intermolecular bonds was achieved with urea or ascorbic acid in an effort to elucidate the presiding intermolecular interactions over gluten network relaxation. Master curves of viscoelasticity were constructed, and relaxation spectra were computed revealing three relaxation regimes for all samples. Relaxation commences with a well-defined short-time regime where Rouse-like modes dominate, followed by a power law region displaying continuous relaxation concluding in a terminal zone. In the latter zone, poroelastic relaxation due to water migration in the nanoporous structure of the network also contributes to the stress relief in the material. Hydrogen bonding between adjacent protein chains was identified as the determinant force that influences the relaxation of the networks. Changes in intermolecular interactions also resulted in changes in microstructure of the material that was also linked to the relaxation behavior of the networks
- …
