1,092 research outputs found

    ANN Model For SiGe HBTs Constructed From Time-Domain Large-Signal Measurements

    Get PDF
    We construct a large-signal artificial neural network (ANN) model for SiGe HBTs, directly from time-domain large-signal measurements. It is known that HBTs are very sensitive to self-heating and therefore we explicitly study the effect on the model accuracy of the incorporation of the self-heating effect in the behavioural model description. Finally, we show that this type of models can be accurate at extreme operating conditions, where classical compact models start to fail

    The Depth of Depravity and the Remedy of an All-Embracing Life System

    Get PDF

    Start-up inertia as an origin for heterogeneous flow

    Get PDF
    For quite some time non-monotonic flow curve was thought to be a requirement for shear banded flows in complex fluids. Thus, in simple yield stress fluids shear banding was considered to be absent. Recent spatially resolved rheological experiments have found simple yield stress fluids to exhibit shear banded flow profiles. One proposed mechanism for the initiation of such transient shear banding process has been a small stress heterogeneity rising from the experimental device geometry. Here, using Computational Fluid Dynamics methods, we show that transient shear banding can be initialized even under homogeneous stress conditions by the fluid start-up inertia, and that such mechanism indeed is present in realistic experimental conditions

    Impregnation of bone chips with antibiotics and storage of antibiotics at different temperatures: an in vitro study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allograft bone used in joint replacement surgery can additionally serve as a carrier for antibiotics and serve as a prophylaxis against infections. However, <it>in vitro </it>dose-response curves for bone chips impregnated with different kinds of antibiotics are not available. In addition, while it would be desirable to add the antibiotics to allograft bone chips before these are stored in a bone bank, the effects of different storage temperatures on antibiotics are unknown.</p> <p>Methods</p> <p>Five different antibiotics (cefazolin, clindamycin, linezolid, oxacillin, vancomycin) were stored, both as pills and as solutions, at -80°C, -20°C, 4°C, 20°C and 37°C; in addition, bone chips impregnated with cefazolin and vancomycin were stored at -80°C and -20°C. After 1 month, 6 months and 1 year, the activity of the antibiotics against <it>Staphylococcus epidermidis </it>was measured using an inoculated agar. The diameter of the <it>S. epidermidis</it>-free zone was taken as a measure of antibiotic activity.</p> <p>In a separate experiment, <it>in vitro </it>dose-response curves were established for bone chips impregnated with cefazolin and vancomycin solutions at five different concentrations.</p> <p>Finally, the maximum absorbed amounts of cefazolin and vancomycin were established by impregnating 1 g of bone chips with 5 ml of antibiotic solution.</p> <p>Results</p> <p>A decrease of the <it>S. epidermidis</it>-free zone was seen with oxacillin and cefazolin solutions stored at 37°C for 1 month, with vancomycin stored at 37°C for 6 months and with cefazolin and oxacillin solutions stored at 20°C for 6 months. The activity of the other antibiotic solutions, pills and impregnated bone chips was not affected by storage. The <it>in vitro </it>dose-response curves show that the free-zone diameter increases logarithmically with antibiotic concentration. The absorbed antibiotic amount of one gram bone chips was determined.</p> <p>Conclusions</p> <p>Storage of antibiotics in frozen form or storage of antibiotic pills at temperatures up to 37°C for 12 months does not affect their activity. However, storage of antibiotic solutions at temperatures above 20°C does affect the activity of some of the antibiotics investigated. The <it>in vitro </it>dose-response curve can be used to determine the optimal concentration(s) for local application. It provides the opportunity to determine the antibiotic content of bone chips, and thus the amount of antibiotics available locally after application.</p

    Pyrolysis of organic side stream materials for the production of biochar as an amendment in green roofs: Characterization and field experiments

    Get PDF
    Green roofs offer a solution to worldwide problems in cities like: the urban heat island effect, floods and the loss of rural regions. Nevertheless, the widespread application of green roofs still faces some serious challenges, e.g. an excessive amount of drainage water, an excess of nutrients in this water, and plant mortality in periods of severe drought. Also, the production process of the components of these substrates, such as expanded clay, is not environmentally and energy-friendly. Biochar amendment in green roof substrates can help to overcome these problems because of its valuable properties like a high nutrient content, high waterholding capacity (WHC), low density and its self-sustaining production process. In this research, biochar is produced from six different side streams in a pilot-scale rotating kiln carbonization reactor (kg/hour input). These side streams consists out of: MDF, date palm, coffee skins, tree bark, olive stones and a waste wood mix. The produced biochars are characterized with multiple physico-chemical analyses like biochar yield, elemental composition, surface functional groups, morphology, WHC, cation exchange capacity and polyaromatic hydrocarbons (PAH’s). Furthermore, a techno-economical analysis is performed on the large-scale production of these biochars. Small scale (0,25 m2) and field experiments (2.5 m2) with biochar incorporated in commercially available green roof substrates in the temperate climate of the Netherlands and Belgium examine whether biochar can offer a solution to the described problems. Based on the analyses of the biochar, in particular the PAH’s and elemental composition, and the small scale growth experiments, two different biochars made from the waste wood mix and tree bark in concentrations of 1 and 5 % are selected for the field experiments. Growth of Sedum plants is monitored with digital imaging processing over a period of several months, starting from November 2018. Several chemical and physical parameters are monitored and linked to the properties of the biochar incorporated substrate like pH, conductivity, nutrient leaching and waterholding capacity

    Two European Cornus L. feeding leafmining moths, Antispila petryi Martini, 1899, sp. rev. and A. treitschkiella (Fischer von Röslerstamm, 1843) (Lepidoptera, Heliozelidae): an unjustified synonymy and overlooked range expansion

    Get PDF
    Antispila treitschkiella (Fischer von Röslerstamm, 1843) and A. petryi Martini, 1899, sp. rev. were regarded as synonymous since 1978, but are shown to be two clearly separated species with different hostplants, life histories, DNA barcodes and morphology. Antispila treitschkiella feeds on Cornus mas L., is bivoltine, and has, by following its ornamentally planted host, greatly expanded its range in north-western Europe. In contrast A. petryi feeds on the widespread native C. sanguinea L., is univoltine, and is one of only two Antispila species previously resident in the British Isles, the Netherlands and northern Europe. Consequently, the increase in abundance of A. treitschkiella in the Netherlands since the early 1990s and in Great Britain in recent years must be regarded as part of a recent expansion into north-western Europe, whereas the native A. petryi is hardly expanding and less abundant. In Britain, detailed surveys of parks and living collections confirmed the monophagy of these two species. A search of British herbarium samples provided no evidence for an earlier date of establishment. Information on recognition of all stages, including DNA barcodes, and distribution is provided, and these two species are compared with the third European Cornus L. leafminer, A. metallella (Denis & Schiffermüller, 1775)

    Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Get PDF
    Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these parameters. Taken together, this typically catabolic treatment (disuse and irradiation) appeared to stimulate cortical expansion in MCAT mice but not WT mice. In conclusion, these results reveal the importance of mitochondrial ROS generation in skeletal remodeling and show that MCAT mice provide a useful animal model for bone studies

    Effects of Simulated Spaceflight on Mitochondrial Oxidative Stress in Bone Remodelling

    Get PDF
    Microgravity and ionizing radiation may contribute to cellular stress; resulting in increased generation of reactive oxygen species (ROS), DNA damage, cell cycle arrest, and cell death. We hypothesized that suppression of excess ROS in osteoblasts and osteoclasts will improve bone microarchitecture. To test our hypothesis, we used irradiated transgenic mCAT mice overexpressing human anti-oxidant catalase gene targeted to the mitochondria (main site for ROS production). mCAT mice expressed the transgene and displayed elevated catalase activity in bone and ex vivo osteoblast and osteoclast cultures. Treated bone from wildtype mice showed elevated levels of oxidative damage whereas mCAT mice did not. Also, increased catalase activity correlated with decreased MDA levels and that increased oxidative damage correlated with decreased % bone volume. Ex-vivo osteoblast colony growth positively correlated with osteoblast catalase activity. mCAT mice displayed reduced % bone volume. Treatment caused significant bone loss in wildtype mice. Treatment also caused slight deficits in microarchitecture of mCAT mice. In conclusion, ROS signaling in both osteoblast and osteoclast lineage cells contribute to skeletal development and remodeling and quenching oxidative damage could play a role in bone loss prevention

    Dried Plum Diet Prevents Bone Loss Caused by Ionizating Radiation: Reduces Pro-Resorption Cytokine Expression, and Protects Marrow-Derived Osteoprogenitors

    Get PDF
    Future long duration missions outside the protection of the Earth's magnetosphere, or unshielded exposures to solar particle events, achieves total doses capable of causing cancellous bone loss. Cancellous bone loss caused by ionizing radiation occurs quite rapidly in rodents: Initially, radiation increases the number and activity of bone-resorbing osteoclasts, followed by decrease in bone forming osteoblast cells. Here we report that Dried Plum (DP) diet completely prevented cancellous bone loss caused by ionizing radiation (Figure 1). DP attenuated marrow expression of genes related to bone resorption (Figure 2), and protected the bone marrow-derived pre-osteoblasts ex vivo from total body irradiation (Figure 3). DP is known to inhibit resorption in models of aging and ovariectomy-induced osteopenia; this is the first report that dietary DP is radioprotective
    • …
    corecore