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Physicochemical Aspects of the Mechanisms of Rapid Antimicrobial
Contact-Killing by Sputtered Silver Oxide Thin Films under Visible
Light
Nathaniel T. Tsendzughul*,† and Abraham A. Ogwu‡

†School of Computing, Engineering and Physical Sciences, University of the West of Scotland, High Street, Paisley Campus, PA1
2BE Scotland, U.K.
‡East Kazakhstan State Technical University, Ust-Kamenogorsk 070004, Republic of Kazakhstan

ABSTRACT: The morphology and band gap of silver oxide thin films have
been tuned by radio frequency reactive magnetron sputtering to deposit
transparent, visible-light-activated photocatalytic biomaterials with excellent
antimicrobial properties. X-ray diffraction, Raman spectroscopy, and X-ray
photoelectron spectroscopy using the Ag 3d5/2 and Ag 3d3/2 binding energy
peaks have been used to study the chemical composition of the films, and the
deposition of two antimicrobial phases of silver oxide, namely, Ag2O and
Ag4O4 was confirmed. The optical band gaps of the films were determined by
optical spectroscopy and are in the range 2.3 eV (539.6 nm) to 3.2 eV (387.8
nm). Strong transmission of up to 80% was observed in the visible region
around 650−750 nm. Silver ion release on the surfaces of the films was
monitored using atomic absorption spectroscopy, and sustained silver ion
release in both water and saline solution for 24 h was confirmed.
Nanocrystallites of sizes between 2.45 and 31.30 nm were observed on the surfaces. The films were challenged with two
Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis) and two Gram-negative bacteria (Escherichia coli
and Pseudomonas aeruginosa) during antimicrobial activity tests using killing curve analysis with 100% contact killing recorded in
25 and 5 min, respectively. The mechanism of antimicrobial efficacy is suggested to be due to silver ion release, small crystallites,
and the ease of ligand replacement in the silver oxide stoichiometry, their exchange and interactions of ligands in the microbe’s
biological systems. Our current finding opens the door to furthering the development of visible-light-activated antimicrobial
surfaces.

1. INTRODUCTION

The sustained fight against pathogenic microorganisms due to
their negative effect on living matter has been on for ages.
Scientists and researchers from different fields are engaged with
this process, and several tools have been used over the years to
offer a solution to this problem. The introduction of antibiotics
in the early 20th century was a major game changer in the fight
against microorganisms. Recently, however, resistance of
microbial infections to multiple antibiotic treatments has been
reported. Resistant bacterial species, also referred to as
superbugs, are classified into three categories, namely, the
critical, high, and medium resistance groups. This situation has
therefore led to the need to develop antimicrobial thin film
coatings that can effectively deal with this problem especially on
surfaces in hospital environments like medical textiles, medical
equipment like catheters, and medical implants under visible-
light-activated photocatalysis.1 The most promising materials
evaluated to date for this application include silver nitride and
oxynitride films prepared by reactive magnetron sputtering and
activated with indoor visible light photocatalysis reported by
Rtimi et al.2,3 Leyland et al.4 have also recently (2017) reported
doping titanium dioxide coatings with copper and fluorine using

sol and dip coating to prepare a visible-light-activated
antimicrobial coating.
Metals play vital roles in the structure, function, and dynamics

of biological systems.5−7 Phosphorus is essential in both the
DNA double helix and cell energetics in adenosine triphos-
phate.8−12 The electrical flux generated due to the movement of
sodium and potassium ions across the cell membrane transmits
information in the nervous system.6,7 Metals were extensively
used for disinfection and antimicrobial treatment before the
advent of antibiotics.13,14 Metals can be replaced with
coordination complexes of biological systems and therefore
used to alter their structure, function, and dynamics.
Transition metals such as gold, silver, copper, and titanium

have been used as antimicrobials either as metals, alloys, or
oxides due to the peculiarity of their chemistry.15 Copper and its
oxides have demonstrated good antimicrobial properties being
reported as effective antimicrobials with the capacity of killing up
to 99.9% of bacteria in contact with them in approximately 2
h.16,17
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For an antimicrobial material to be effective, it must have the
ability to cause multiple attack on microbes. A simultaneous
attack on the cell wall, DNA, and protein synthesis destroys the
bacteria’s defense, leaving little room for resistance.18−20

The generation of electron−hole pairs in semiconductors
through the photocatalytic process provides potent antimicro-
bial properties. In addition, the production of reactive oxygen
species (ROS) and hydroxyl radicals as well as metal ion release
provides the necessary tools for killing microbes.21

Titanium dioxide has been extensively researched and used as
a photocatalyst due to its low cost, easy availability, and
photochemical stability.22,23 It however has a band gap of about
3.1 eV and is excited using ultraviolet light, which imposes a
limitation in its utilization for some applications.24 Some of the
approaches used to obtain visible-light-activated photocatalysts
include doping of titanium dioxide and dye sensitization.25−28

The development of a photocatalyst that is an undoped single
compound, cheap enough, and activated using visible light has
remained a major challenge to date.
The band gap and morphology of semiconductor thin films

can be tuned using deposition parameters such as oxygen flow
rate, forward power, and chamber temperature during
deposition. In this investigation, the band gap and morphology
of a multiphase but undoped single compound silver oxide thin
film was varied using reactive magnetron sputtering and two
parameters, the forward power and oxygen flow rate, during
deposition using the conditions shown in Table 1, to obtain a

semiconductor biomaterial that is optically transparent, photo-
catalytic under visible light, and has antimicrobial properties.
The previous investigations on photocatalytic silver oxide films
were based mainly on the dissociation of dyes,26−28 while our
present investigation is focused on their antimicrobial killing
effect on the microbes investigated in this paper.29 Silver oxide
photocatalysts have been investigated and reported to be very
stable after eight cycles of use on methyl orange, phenols, and
methyl blue.30

2. RESULTS
2.1. Deposition Conditions. The deposition conditions

used to produce the silver oxide thin films are presented in Table
1
The thickness of the silver oxide films deposited increased

with deposition power. The average thicknesses of a selection of
films were measured by scanning electron microscopy (SEM)
and are presented in Table 2. The rate of deposition of the oxides
of silver varies with forward deposition power, and typical values
are presented in Table 2.
2.2. Scanning Electron Microscopy Results. Scanning

electron microscope micrographs of the cultured bacteria on
silver oxide thin film are shown in Figure 1.

2.3. X-ray Diffraction (XRD) Analysis. The XRD spectra
for the as-deposited thin films are shown in Figure 2A.
Both silver and its oxides AgO and Ag2O previously reported

in the literature are observed in our analysis.14,29 Dellasega et
al.31 also previously reported observing tetragonal and
monoclinic antimicrobial phases of Ag4O4 in their silver oxide
films. We observed the Ag4O4 phase in our XRD spectra of the
films deposited at a forward power of 100W and an oxygen flow
rate of 10 sccm as reported by Dellasega.32 We also detected
Ag2O in our films produced at 400 W forward power.33

The crystal sizes of the deposited silver oxide thin films were
calculated using the Schuler formula34

D
0.89

cos
λ

β θ
=

(1)

where D is the crystal size, λ is the wavelength of X-rays (Cu Kα
= 1.54 Å), θ is calculated from the 2θ angle, and β is the full
width at half-maximum (FWHM). The full width at half-
maximum was obtained by Gaussian−Lorentzian fitting of the
XRD spectra using Magic plots software. The crystallite sizes are
presented in Table 3.

2.4. Raman Spectroscopy. The details of the phases
observed in our Raman analysis for films prepared at 100 W
forward power are shown in Table 4.
The major phases in our deposited films are AgO, Ag2O, and

Ag4O4 for the films prepared at 100W forward power. The same
phases were observed for all of the films we prepared between
100 and 400 W forward power, although additional Raman
peaks associated with these phases were observed. A typical
Raman spectrum obtained in our investigation is shown in
Figure 2B. The irreducible representation from group theory
was used to predict vibrational modes that are Raman-active.
The irreducible representation of silver oxides indicates that
Ag2O has the following vibrational modes33

A E 3T (IR) T T (R)3N 2u u 1u 2u 2gΓ = + + + + (2)

The analysis predicts three active modes like the prediction for
the Cu2O structure. The 3T1u modes are infrared-active, while
the T2g mode is Raman-active. The T1u symmetry infrared-active
modes are due to relative motion of the silver and oxygen lattices
and are responsible for the asymmetric Ag−O stretching mode
as well as the asymmetric O−Ag−O bending mode vibrations
observed. The T2g Raman active mode about the symmetry
center at Ag(I) is generated by the O2

− ions and is assigned to
Ag−O stretching vibration. The Ag2O phase of silver oxide does
not display Raman and infrared activity due to its inversion
symmetry.
The nature of the optically active vibrational modes for

monoclinic AgO was established using factor group analysis.
The C2b factor group and the two Ag(III) and two Ag(I) ions in
the primitive cell sites of C1 symmetry and four O2− ions in the
C1 sites are used for establishing the vibrational modes of silver
oxide.33 The vibrational modes resulting from the analysis are

Table 1. Deposition Conditions for the Prepared SilverOxide
Thin Films

argon flow rate (sccm) 30, 60
oxygen flow rate (sccm) 0, 2, 4, 6, 8, 10
forward radio frequency (rf) input power (W) 100, 200, 250, 300, 350, 400
reflected power (W) <2
target silver
substrate glass
deposition time (min) 2 or 5
substrate temperature room temperature

Table 2. Selected Typical Thicknesses and Deposition Rates
for Our Silver Oxide Films Prepared Using 5 min Deposition
Time

s/no
forward

power (W)
oxygen flow rate

(sccm) thickness (nm)
deposition rate
(nm/min)

1 100 6 116.00 ± 2.25 23.20
2 200 6 144.75 ± 2.75 28.95
3 300 6 333.60 ± 3.64 66.70
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8A (IR) 7B (IR) 3A (R) 3B (R)vib u u g gΓ = + + + (3)

Monoclinic AgO is found to have 21 optically active modes, 15
of which are infrared-active and 6 are Raman-active.33

2.5. X-ray Photoelectron Spectroscopy (XPS). The XPS
survey and deconvoluted high-resolution spectra for the
deposited samples are shown in Figure 3.

The XPS analysis of the samples indicates the presence of
mixed phases of silver oxides Ag2O and AgO in silver, which
agrees with both XRD and Raman analyses conducted on the
samples. The XPS core-level binding energies of around 374
eV35 corresponding to silver were observed to be present in all of
the samples, confirming the observation of strong absorption
spectrum of the sample reported at about 370 nm in optical

Figure 1. Scanning electron microscope images of (A) Escherichia coli, (B) Pseudomonas aeruginosa, (C) Staphylococcus aureus, and (D) Staphylococcus
epidermidis on silver oxide surfaces.

Figure 2. (A) XRD spectra of silver oxides deposited at different oxygen flow rates at 300 W forward power and (B) Raman spectrum of silver oxide
deposited at 100 W power and 10 sccm oxygen flow.

Table 3. Crystallite Sizes of Silver Oxides at Varying rf Powers and Oxygen Flow Rates

rf power (W) oxygen flow (sccm) 2θ θ cos θ FWHM (deg) FWHM (rad) D (m)

200 2 38.23 19.115 0.944863 1.773 0.030945 4.69 × 10−09

44.35 22.175 0.926035 1.773 0.030945 4.78 × 10−09

8 36.48 18.24 0.949754 2.5938 0.04527 3.19 × 10−09

63.37 31.685 0.850949 3.7692 0.065785 2.45 × 10−09

250 6 32.35 16.175 0.960415 1.1812 0.020616 6.92 × 10−09

35.8 17.9 0.951594 2.803 0.048922 2.94 × 10−09

8 36.48 18.24 0.949754 2.5938 0.04527 3.19 × 10−09

63.37 31.685 0.850949 3.7692 0.065785 2.45 × 10−09

300 8 32.23 16.115 0.960707 2.9316 0.051166 2.79 × 10−09

36.89 18.445 0.948628 2.9316 0.051166 2.82 × 10−09

10 32.53 16.265 0.959977 2.1344 0.037252 3.83 × 10−09

37.09 18.545 0.948074 2.1344 0.037252 3.88 × 10−09

400 2 33.21 16.605 0.958298 2.9572 0.051613 2.77 × 10−09

38.34 19.17 0.944548 2.9572 0.051613 2.81 × 10−09

43.9 21.95 0.92751 2.9572 0.051613 2.86 × 10−09

6 35.97 17.985 0.951137 3.0602 0.053411 2.7 × 10−09

38.07 19.035 0.94532 3.0602 0.053411 2.71 × 10−09
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spectrophotometry of the samples. The silver associated with
AgO was observed to be at a binding energy of 367.1 eV,36

suggesting the presence of amixture of Ag and AgO (Figure 3C).
Silver associated with Ag2O is reported at a binding energy of
367.7 eV, implying the mixture of the two in the sample. The O
1s binding energies in the high-resolution spectra of oxygen are
reported in the literature to belong to AgO and Ag2O, while
some are assigned to superoxide, hydroxyl and carbonate groups.
The presence of superoxide and hydroxyl groups confirms the
antimicrobial properties of the oxides since the presence of these
groups is very potent against bacteria.37 The O 1s peak in AgO
was observed at 530.1 eV, in agreement with earlier literature
report,38 confirming the presence of this phase in the sample,
while the binding energy observed at 528.6 eV is due to
Ag2O

39,40 in the sample as shown in Figure 3B. The presence of
the O 1s peaks at binding energies between 530 and 532 eV is
indicative of the presence of carbonates, superoxide, and
hydroxyl group.41,42

2.6. Optical Transmittance, Reflectance, and Band
Gap.Optical transmittance and reflectance for the as-deposited
silver oxide thin films were measured in the 350−1100 nm
wavelength range using the Aquila nkd-8000 spectrophotom-
eter. The Aquila optical spectrophotometer was calibrated using

fused silica, which also served as the reference for the optical
measurements. A plot of absorption and transmittance spectra as
well as the absorption coefficient versus wavelength or photon
energy for direct band gap for each sample was generated for
silver oxide. The thicknesses of the deposited films were
measured using an image analysis software attached to the
scanning electron microscope. The optical spectrophotometer
measurements on our prepared silver oxide thin film samples
indicated that the silver oxides transmit up to 80% of light
incident in the wavelength range between 650 and 750 nm,
which is in the visible region as presented in Figure 4A−C.
The transmission spectrum was generated from the

equation43

T
I
I0

=
(4)

where I0 and I are the intensities of the incident and transmitted
light beams, respectively. The absorption coefficient was plotted
using the relationship44

i
k
jjj

y
{
zzzd

I
I

1
log 0α =

(5)

which links the optical absorption coefficient (α) and thickness
(d).
Tauc’s relation45 expressed in eq 6 was used to determine the

band gap of the thin films

h A h E( ) ( )g
1/2α ν ν= − (6)

where h is Planck’s constant, ν is the photon frequency, and Eg is
the optical band gap.
Tauc plots were generated, and the linear portion of the

curves was extrapolated to the hν axis to give an estimate of the
band gap. The direct optical band gap to the first approximation
is a straight line, which when extrapolated touches the photon
energy axis at the band gap value. The typical plot obtained is as
shown in Figure 4A. The band gap values obtained were

Table 4. Selected Raman Spectra Peak Point Data Used for
the Identification of the Phases in the SilverOxide Thin Films
Deposited at 100 W Forward Power and 10 sccm Oxygen
Flow Rate

forward power (W) during
deposition

Raman peaks
(cm−1) FWHM

identified
phases

100 467 12.12 AgO, Ag4O4

100 486 18.48 AgO, Ag4O4

100 424 28.76 Ag4O4

100 217 26.38 AgO, Ag4O4

100 423 29.06 Ag2O, Ag4O4

100 477 32.06 Ag2O, Ag4O4

Figure 3. XPS binding energy spectra of samples deposited at 300 W power and 10 sccm oxygen: (A) survey, (B) oxygen high-resolution, and (C)
silver Ag 3d spectra.

ACS Omega Article

DOI: 10.1021/acsomega.9b01856
ACS Omega 2019, 4, 16847−16859

16850

http://dx.doi.org/10.1021/acsomega.9b01856


between 2.3 eV (539.6 nm) and 3.1 eV (387.8 nm) depending
on deposition conditions used for preparing the silver oxide films
and span both the ultraviolet and visible ranges of the solar
spectrum, consistent with other reports in the literature.46−48

The silver oxides can therefore be activated as photocatalysts
using visible light and thus eliminating the use of ultraviolet
radiation for activation. It was also observed that the silver oxides

deposited absorbed solar radiation at about 370 nm as shown in
Figure 4C.

2.7. Atomic Absorption Spectroscopy. Silver ion release
was observed in both water and saline solution as shown in
Figure 5A,B.
The ion concentration in water was observed to be higher

than that in saline solution. The lowest concentration of 0.5343

Figure 4. (A) Tauc plot for silver oxide deposited at 100W power and 6 sccm oxygen flow, (B) transmittance spectrum of silver oxide deposited at 400
W and 10, 8, and 6 sccm oxygen flow, and (C) absorption coefficient as a function of wavelength for silver oxides deposited at a power of 400 W and
varied oxygen flow rates of 10, 8, and 6 sccm.

Figure 5. Silver ion release from silver oxide deposited at 200 W power and 10 sccm oxygen flow in (A) water and (B) saline solution.

Figure 6.Killing curve for bacteria on silver oxides deposited at 100, 300, and 400W forward powers each at 10 sccm oxygen flow, silver at 300W, and
glass slide for (A) E. coli, (B) P. aeruginosa, (C) S. aureus, and (D) S. epidermidis.
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ppm was recorded for silver oxide deposited at 400 W power
after exposure for 12 h, and the highest value of 33.0152 ppm
was observed for silver deposited at 300 W after exposure for 24
h. The silver oxide deposited at 200 W showed a low ion release
in the first 1 h, which builds up to higher values after 6 and 12 h.

The results indicate that silver ions are released in both water
and saline solution and that the release is sustained for 24 h,
which confirms that the silver oxide thin films can function as
antimicrobial material surfaces. The availability of silver ions on
the surfaces to both initiate and sustain antimicrobial activity in

Table 5. Student’s t-Test Statistical Analysis for Gram-Negative E. coli and P. aeruginosa

bacteria samples compared mean stand. dev. two-tailed sig. significance

E. coli 100 W 0.7682 2.17292
vs 0.991 no sig. diff.
300 W 0.7554 2.13654
100 W 0.7682 2.17292
vs 0.969 no sig. diff.
400 W 0.7261 2.05381
300 W 0.7554 2.13654
vs 0.978 no sig. diff.
400 W 0.7261 2.05381
100 W 0.7682 2.17292
vs 0.000 sig. diff.
silver 6.3078 0.25923
300 W 0.7554 2.13654
vs 0.000 sig. diff.
silver 6.3078 0.25923
400 W 0.7261 2.05381
vs 0.000 sig. diff.
silver 6.3078 0.25923
100 W 0.7682 2.17292
vs 0.000 sig. diff.
glass 6.5236 0.09464
300 W 0.7554 2.13654
vs 0.000 sig. diff.
glass 6.5236 0.09464
400 W 0.7261 2.05381
vs 0.000 sig. diff.
glass 6.5236 0.09464

Pseudomonas 100 W 0.7798 2.20557
vs 0.965 no sig. diff.
300 W 0.7317 2.06945
100 W 0.7798 2.20557
vs 0.809 no sig. diff.
400 W 0.5459 1.54403
300 W 0.7317 2.06945
vs 0.842 no sig. diff.
400 W 0.5459 1.54403
100 W 0.7798 2.20557
vs 0.000 sig. diff.
silver 6.7864 0.13170
300 W 0.7317 2.06945
vs 0.000 sig. diff.
silver 6.7864 0.13170
400 W 0.5459 1.54403
vs 0.000 sig. diff.
silver 6.7864 0.13170
100 W 0.7798 2.20557
vs 0.000 sig. diff.
glass 6.9269 0.09077
300 W 0.7317 2.06945
vs 0.000 sig. diff.
glass 6.9269 0.09077
400 W 0.5459 1.54403
vs 0.000 sig. diff.
glass 6.9269 0.09077
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water or saline solution is guaranteed. The silver ions released in
water and saline solutions can then attach to bacteria or
penetrate the bacteria, leading to a disruption of the chemical
structure and function of the biochemical components inside the
bacteria.
2.8. Results of Antimicrobial Tests and Killing Curves

for Microbes.The results obtained are as shown in Figure 6A−
D representing the killing curves for the microbes we
investigated after the exposure of bacteria at different time
intervals to silver oxide, silver, andmicroscope glass slide control
surfaces, respectively.
2.9. Statistical Analysis. A Student’s t-test statistical

analysis was performed with the surfaces as independent
variables while the log of colony forming units (CFUs) was
the dependent variable, and the result is presented in Tables 5
and 6 for Gram-negative and Gram-positive bacteria,
respectively.
No statistically significant differences in the means of the log

of colony forming units was observed between the silver oxide
surfaces prepared at 100, 300, and 400 W forward power during
deposition for all of the fourmicrobes under study. There was no
statistically significant difference in the mean of log of the colony
forming units as indicated below

(1) E. coli: 100 vs 300 W (p > 0.991); 100 vs 400 W (p >
0.969); 300 vs 400 W (p > 0.978).

(2) P. aeruginosa: 100 vs 300 W (p > 0.965); 100 vs 400 W (p
> 0.809); 300 vs 400 W (p > 0.842).

(3) S. aureus: 100 vs 300 W (p > 0.494); 100 vs 400 W (p >
0.419); 300 vs 400 W (p > 0.913).

(4) S. epidermidis: 100 vs 300W (p > 0.884); 100 vs 400W (p
> 0.906); 300 vs 400 W (p > 0.978).

Statistically significant differences were observed between the
means of the colony forming units for each of the four bacteria
on all silver oxide-coated substrates compared with the control
silver-coated and the uncoated glass substrates over the time
considered. The details of the findings for each microbe are as
follows:

(1) E. coli: All comparisons between silver oxides (prepared at
100, 300 and 400 W) at 10 sccm oxygen flow and the
control surfaces (silver, glass) indicated a statistically
significant difference in the means of the colony forming
units, and all were at p < 0.05 level of significance.

(2) P. aeruginosa: A similar pattern observed in E. coli was
observed for this microbe. All comparisons between silver
oxides (prepared at 100, 300, and 400 W) at 10 sccm and
the control surfaces (silver and glass) indicated a
statistically significant difference in the means of the
colony forming units, and all were at p < 0.05 level of
significance.

(3) S. aureus: The microbial colonization levels for the silver
oxide-coated substrates compared to the silver-coated and
uncoated glass substrates were all at p < 0.001 level of
statistical significance.

(4) S. epidermidis: The microbial colonization levels for the
silver oxide-coated substrates compared to the silver-
coated and uncoated glass substrates were all at p < 0.001
level of statistical significance.

One-way analysis of variance (ANOVA) was conducted on
the data obtained from the killing curve measurements to test
whether there was any significant difference between the means
of the log of colony forming units with time at different time
intervals on samples at different deposition conditions. The level

of significance was set at 0.05 or 5%. The null hypothesis set was
that there is always no significant difference between the means
of the log of colony forming units for bacteria in contact with

Table 6. Student’s t-Test Statistical Analysis for Gram-
positive S. aureus and S. epidermidis

bacteria
samples
compared mean

stand.
dev.

two-
tailed
sig. significance

S. aureus 100 W 2.6851 2.88939
vs 0.494 no sig. diff.
300 W 1.7278 2.54687
100 W 2.6851 2.88939

0.419 no sig. diff.
400 W 1.5913 2.33373
300 W 1.7278 2.54687
vs 0.913 no sig. diff.
400 W 1.5913 2.33373
100 W 2.6851 2.88939
vs 0.008 sig. diff.
silver 6.4450 0.20053
300 W 1.7278 2.54687
vs 0.001 sig. diff.
silver 6.4450 0.20053
400 W 1.5913 2.33373
vs 0.001 sig. diff.
silver 6.4450 0.20053
100 W 2.6851 2.88939
vs 0.007 sig. diff.
glass 6.4848 0.16349
300 W 1.7278 2.54687
vs 0.001 sig. diff.
glass 6.4848 0.16349
400 W 1.5913 2.33373
vs 0.001 sig. diff.
glass 6.4848 0.16349

S. epidermidis 100 W 2.3760 2.63728
vs 0.884 no sig. diff.
300 W 2.5786 2.80863
100 W 2.3760 2.63728
vs 0.906 no sig. diff.
400 W 2.5385 2.77604
300 W 2.5786 2.80863
vs 0.978 no sig. diff.
400 W 2.5385 2.77604
100 W 2.3760 2.63728
vs 0.004 sig. diff.
silver 6.3282 0.20775
300 W 2.5786 2.80863
vs 0.007 sig. diff.
silver 6.3282 0.20775
400 W 2.5385 2.77604
vs 0.006 sig. diff.
silver 6.3282 0.20775
100 W 2.3760 2.63728
vs 0.004 sig. diff.
glass 6.3794 0.14425
300 W 2.5786 2.80863
vs 0.006 sig. diff.
glass 6.3794 0.14425
400 W 2.5385 2.77604
vs 0.006 sig. diff.
glass 6.3794 0.14425
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surfaces. Results obtained from the ANOVA test indicate that
the p values for all of the four microbes were less than 0.05,
implying that at least there is a pair of data set whose means are
significantly different from each other, thus justifying the
conduct of the post hoc Tukey test to find out which pair has
statistically significant difference in the means of log of colony
forming units. A post hoc Tukey test was therefore conducted,
which confirmed that the means of their colony forming units on
the tested surfaces were statistically significantly different (p <
0.05). Our investigation shows that the silver oxide surfaces are
antimicrobial with the capacity to kill the microbes examined in
this investigation within amaximumof 20min of exposure to the
silver oxide surfaces as shown in Figure 5a−d. E. coli and P.
aeruginosa are unable to survive on the silver oxide surface for
more than 5 min, S. aureus survives between 10 and 15 min, and
S. epidermidis survives up to amaximumof 20min. Themicrobes
however continue to grow on both the silver and the uncoated
microscope glass slide control surfaces up to 60 and 90 min after
exposure, respectively.

3. DISCUSSION
Wang et al.46 and other researchers30,47,48 proposed the
following basic reaction mechanisms for the photocatalytic
dissociation of chemical dyes using Ag2O in the visible light
regime on different chemical dyes including methyl orange. The
process starts with the irradiation of Ag2O with light energy
lower than or equal to its band gap energy of 1.9 eV, leading to
the generation of electron−hole pairs that migrate to the surface,
i.e.

h hAg O e2 ν+ → ++ −
(7)

In an aqueous environment, the electron−hole pairs will react
with oxygen to form reactive oxygen species (ROS), hydroxyl
radicals •OH, and superoxide anions as indicated below

hO 2 OH 2 O H O2 3 2+ + → +• +
(8)

O e O3 3+ →− −
(9)

The photocatalytic dissociation of chemical dyes through the
above reaction mechanisms will involve the following reactions

h dye oxidation products+ →+
(10)

O dye oxidation products3 + →−
(11)

The above reaction pathways for silver oxide exposed to an
aqueous environment are also supported by density functional
theory calculations.30 The above photocatalytic dissociation in
combination with silver ion release in solution confirmed by our
atomic absorption spectroscopic measurements and the nano-
sized particles evaluated from X-ray diffraction analysis provides
the necessary chemical entities for the antimicrobial interaction
of silver oxide with microbes as discussed below.
These results from the antimicrobial tests agree well with the

earlier results from ion release, XPS, Raman, XRD, and optical
characterization measurements, which confirmed that the silver
oxides are photocatalytic and contain antimicrobial silver oxide
phases and crystallite sizes between 2.45 and 31.30 nm. The
results also indicate potentially that the silver oxides are better
antimicrobial materials compared to silver, which is also
reported to be antimicrobial. The nanocrystallites are small
enough to pass through the pores in the bacterial cell membrane,
which are 2−3 nm,49,50 resulting in a simultaneous attack on
inner biochemical components such as DNA/RNA and

proteins, while the other crystallites attack the cell membrane.
This multiple attack does not permit the bacteria to develop
resistance against the attack. The band gap of the mixed-phase
silver oxide materials, which ranges between 2.3 and 3.1 eV, is
also in the visible region of the solar spectrum, suggesting that
the material can be activated using sunlight. Our antimicrobial
tests were carried out under ordinary sunlight under room
conditions in the absence of ultraviolet lamps, and the killing
effect was quite pronounced for both Gram-positive and Gram-
negative bacteria.
The killing mechanism of the bacteria exposed to silver oxide

films in our investigation is believed to be affected by an initial
photocatalytic dissociation into silver ions, reactive oxygen,
superoxide, and hydroxyl radicals. The presence of these radicals
and silver ions confirmed by our ion release measurements in
solution in an aqueous environment leads to ligand and metal
complex replacements in the cell membrane, DNA, and proteins
in the bacteria and the killing of the bacteria as previously
reported.29

It has been established that silver ions interact with the cell
wall, resulting in antimicrobial activity. The interaction with the
cell wall paves the way for penetration of silver-containing
species into the interior of the cell to interact with biochemical
components such as DNA and enzymes. Holt and Bart51

reported that E. coli when exposed to silver ions permitted 60%
transportation of the ions into the interior of the cell, while 40%
interacted with the cell membrane. This interaction causes lysis
and detachment of the cell membrane from the cell wall as well
as creates an electron-light region, which originally was dense,
resulting in loss of replication ability of the bacteria.52

Atomic silver (Ag0) is inert, but the ionic forms Ag+ and Ag2+

are reactive. The Ag+ ion with its d10 electronic configuration has
zero-ligand field stabilization energy and readily forms labile
complexes in which there is rapid exchange of the original ligand
set for new ligands available from the surrounding system.
Ligand-exchange reactions have suggested the relative order of
Ag+ bond strength to be52−58

Ag P Ag S Ag Cl Ag N Ag O− > − ≫ − > − ≫ −

The mechanism of the antimicrobial activity of silver is observed
to involve three interactions, namely,

(1) the inhibition of transport functions in the cell wall, which
affects respiration

(2) the interruption of cell metabolism by changing the
enzyme structure, and

(3) inhibition of cell division in its interaction with
DNA.52−58

This multiple attack of silver ions on microbes is very effective
and unique and reduces the possibility of resistance develop-
ment by microbes.52−58 Several significant structural and
morphological changes occur in bacteria after exposure to silver
ions such as an electron-light region observed in the center of the
cell containing a tightly condensed substance twisted together, a
big gap between the cytoplasmic membrane and the cell wall,
and the presence of some electron-dense granules around the
cell wall.52,54 The DNA is effectively replicated when DNA
molecules are in a relaxed state, but the replication ability is lost
when DNA cells are condensed, and this happens when silver
ions penetrate the bacterial cell wall. This subsequently results in
the death of the bacterial cell. Protein groups are also inactivated
when heavy metals react with proteins by attachment. In this
interaction, silver inhibits the uptake of phosphate and the
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release of phosphate mannitol, succinate, proline, and glutamine
in E. coli. The antimicrobial activity of the silver(I)-based
complexes is controlled by the weak binding property of the Ag−
O bond and accounts for the ease of ligand replacement in the
complex. In biological system, the ease of ligand replacement in
the silver (I) complexes would result in further replacement with
biological ligands. Ligand replacement is observed for O−, N−,
and S− donor atoms. The weak Ag−O and Ag−N bonds exhibit
antimicrobial and antifungal activities, while themajor inhibitors
of bacteria and yeast growth are the sulfur atoms in proteins. The
silver(I) ion freely interacts with ligands in proteins, enzymes,
and cell membranes, which have a rich supply of the donor
atoms replacing them and resulting in the antimicrobial activity
of the complex.53 Silver(I) ions are released into the biological
system by coordinating ligands in the silver(I) complex. The
efficacy of the antimicrobial activity of the complex is defined by
the ease of ligand replacement in the complex. According to
Tajmir-Riahi et al.,55 Ag(I) binds very strongly with nucleic
acids, resulting in the formation of many complexes with the
DNA. Type I complexes result when silver binds with guanine
and adenine at the N7 site at low and high concentration ratios
of Ag and nucleotide. Type II complexes are formed between the
Ag(I) ion and G−C and A−T base pairs. The antimicrobial and
other desirable properties of the complexes can be changed by
varying the type and number of ligands coordinating with the
Ag(I) ion in the complex.56 Some of the key factors used in the
design of silver-based antimicrobial complexes are as follows:56

(1) The type of atoms bound to the Ag+ ion.
(2) The ease of ligand replacement and control of Ag+ ion

release.
(3) Chemical and photostability.
(4) Cost.

The bonding between the silver ion, Ag+, and enzymes
available in the bacterial respiratory chain initiates the
production of reactive oxygen species in large quantities due
to inefficient electron passage at the terminal oxidase, providing
an explanation as to why the silver(I) ion is toxic to bacteria. The
rate of metal ion release and the relative stability of any silver
complexes can be controlled using variations in the ligand
architecture and the overall structural motif of the compound.
Izatt et al.57 further confirmed that three modes of binding are

distinguishable in the silver−DNA binding. The guanine N7 site
is a major binding site at Ag/nucleotide concentration ratios
between 0.2 and 0.5, while type II involves A−T and G−C base
pair sites and often results in proton liberation. Type III is
observed when the major binding sites for type I and type II
complexes are saturated. Wu et al. also reported58 that the
silver−DNA binding causes the DNA to switch from its B-form
structure, which originally is twisted to a flat base pair structure
for type I complexes. In type II complexes, the flat base structure
switches back to the propeller base pair structure. In their report,
Arya and Yang59 observed that type I complexes are formed
from a mixture containing Ag(I) and calf-thymus DNA at a
molar ratio of 1:5 and that Ag(I) binds to guanine but not to
adenine, cytosine, thymine and the backbone phosphate groups.
Although silver ions bind readily with ligands and molecules

as well as proteins in the human body, including albumins and
metallothioneins and interact with trace metals in metabolic
pathways, silver release occurred at such a relatively slow rate
and low concentrations that it does not pose a threat to the
human body. Ag+ has been reported to lead to the uncoupling of
the respiratory chain from oxidative phosphorylation, a collapse

of the proton motive force across the cytoplasmic membrane,
and the interaction with thiol groups of membrane-bound
enzymes and proteins.60−62 The cytoplasmic membrane
contains proteins and enzymes vital to the respiratory chain
and key transport channels and has been severally suggested as a
primary target site for biocidal activity of the silver ion at low
concentrations.60−63 Silver ions interact with cytoplasmic
components inside the cell at higher concentrations.62,63

The effectiveness of the antibacterial activity of silver ions
even when present in low concentrations has been further
highlighted in the literature by Rtimi et al.,64 who explained E.
coli inactivation in Zr−NO−Ag co-sputtered surfaces through
the oligodynamic effect.
We believe that a similar or related mechanism may be

operating in the recently described “Zombie killing effect”
induced by silver ions in bacteria,65 also expressed through the
equation

Ag viable bacterium (Ag killed bacterium)+ →+
(12)

Our current finding on visible-light-activated undoped anti-
microbial silver oxide coatings also provides the additional
advantage of an improved simple integrated fabrication route
based on reactive magnetron sputtering, alongside other
significant recent advances based on doped silver nitrides and
complex silver oxynitrides, as well as doped titanium dioxide
coatings with copper and fluorine using sol and dip coating to
prepare a visible-light-activated antimicrobial coating.2−4 The
silver oxide coatings can also be considered for application as a
top layer antimicrobial coating for orthopedic implant coatings
prepared by magnetron sputtering66 or other preparation
methods.
Clinical microbiologists have observed that bacteria are

resistant to silver in a variety of environments and circum-
stances.67 The environments include chronic wounds and burns,
dentistry, occupational silver exposure, and water systems.67,68

Evidence of bacterial resistance to silver is provided by
mutagenic changes within the bacterial genome.67 Bacterial
resistance to silver can arise due to intrinsic natural properties or
through DNA mutations in the plasmid and the transposons.67

Silver resistance is also transmissible to susceptible bacterial
strains. Reports in the literature confirmed the prevalence of
epigenetic mechanism during the application of silver nitrate,
silver sulphadiazine, or a silver dressing67 for treatment of
wounds indicate that silver ions when present at a concentration
lower than 60 ppm preferably bind to albumins, macroglobulins,
protein cell membranes of the host, and inorganic anions in the
microenvironment and therefore are not available for anti-
microbial action.
Silver ion release both in water and saline conducted during

this research indicated that the concentrations were lower than
60 ppm, yet Gram-positive and Gram-negative bacteria could
not survive on the surfaces for more than 25 min, as observed in
the antimicrobial tests conducted. The efficacy of the killing
ability in addition to the silver ion release is attributable to the
generation of reactive oxygen species, as confirmed by XPS
analysis, from photocatalysis and the small sizes of the
nanoparticles as evaluated using XRD analysis, which could
freely pass through the pores in the bacterial cell membrane
resulting in attack on the DNA/RNA, proteins, and the cell
membrane simultaneously. This new development in the
nanostructured, visible-light-activated photocatalytic silver
oxide biomaterial will certainly reactivate further interest of
clinicians in managing wound infections and other antimicrobial
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applications since the multiple and simultaneous attack caused
by the biomaterial does not give the bacteria time to adjust and
initiate resistance when attacked.

4. SUMMARY AND CONCLUSIONS

We prepared an optically transparent mixed-phase but single
compound silver oxide thin film biomaterial through the
variation of two deposition parameters, namely, the oxygen
flow rate and forward power, during reactive magnetron sputter
deposition. The undoped silver oxide films can be activated
through photocatalysis since their band gap can be tuned to be
within the visible range of the solar spectrum, by varying the
deposition parameters appropriately. We confirmed the release
of silver ions into water and saline solution when our prepared
silver oxide films were exposed to these environments. The silver
oxide films also displayed antimicrobial properties through rapid
bacterial contact killing. The rate of metal ion release and the
relative stability of any silver complexes can be controlled using
variations in the ligand architecture and the overall structural
motif of a silver compound. We observed that there is a
significant statistical difference between the logs of colony
forming units for each of the Gram-positive and Gram-negative
bacteria on the silver oxide-coated substrate compared to that on
the two control surfaces of silver-coated and uncoated glass
substrates used in this investigation over the time periods
considered, implying that the exposure of the microbes to the
silver oxide surfaces has an antimicrobial effect on them.
There was however no statistically significant difference in the

logs of colony forming units of all four bacteria on the silver
oxides deposited at different forward powers used during
reactivemagnetron sputtering, and all of the silver oxide coatings
showed an antimicrobial effect on bacteria exposed to them. The
mechanism of antimicrobial activity of the aqueous silver ions
released from our silver oxide thin film and the rapid killing of
microbes are proposed to take place in three ways, namely, the
interference with electron transport, binding to DNA, and
interaction with the cell membrane. The coordination of donor
atoms to the silver(I) center and the ease of ligand replacement
appear to be the key factors leading to a wide spectrum of
antimicrobial activities and to be the primary targets for the
inhibition of bacterial survival and growth. We believe that the
abovemechanisms are responsible for the rapid death of bacteria
reported in our killing curve investigation on microbes when
they are exposed to silver oxide films. A recent (2017)
investigation by Rtimi et al.69 has also confirmed the multiple
channels of silver−copper ion bacterial inactivation involving a
predominant ionic diffusion route through cell wall porins and
surface-effect-dominated cell wall damage in genetically
modified bacteria that were free from cell wall porins. The
ability of the silver oxide films to also transmit visible light opens
the potential for their application beyond the development of
antimicrobial surfaces in a hospital environment into other areas
like contact lenses and in application areas where both optical
transparency and antimicrobial activity are required.

5. EXPERIMENTAL METHODS

5.1. Deposition of Silver and Silver Oxide Thin Films.
Thin films of silver oxide were deposited using a cryopumped
vacuum chamber by a reactive magnetron sputtering unit. Glass
microscope slides were used as substrates for deposition. The
glass slides were cleaned ultrasonically using isopropyl alcohol
and then washed with deionized water before the deposition of

the thin films. A solid silver target of very high purity supplied by
PI-KEM (99.99%) was used for deposition, while the sputtering
and reactive gases were argon and oxygen, respectively.

5.2. Scanning ElectronMicroscopy.AHitachi S4100 field
emission scanning electron microscope was used to obtain the
scanning electron microscope micrographs during investigation.

5.3. X-ray Diffraction Analysis. A Siemens D5000 X-ray
diffractometer using a Cu Kα radiation of wavelength 1.54 nm
with Powder Cell software was used for X-ray diffraction
analysis. The 2θ angle was varied between 5 and 155°.

5.4. Raman Spectroscopy. Raman spectroscopy, using a
laser source of wavelength 532 nm at an energy of 2 mW, was
conducted on the deposited samples using a Thermo Scientific
DXR Raman microscope spectrometer interfaced with a
computer with OMNIC spectra software to obtain the Raman
spectra of the as-deposited silver oxide thin films.

5.5. X-ray Photoelectron Spectroscopy. The X-ray
photoelectron spectroscopy used for this investigation was
performed using a Scientia ESCA300 spectrometer (Thermo
Scientific) provided by the National EPSRC User’s Services at
the University of Newcastle Upon Tyne, U.K. The excitation
source is Al Kα with an excitation energy of 1.5 keV and a
current of 3 mA. Survey scans were obtained at 200 eV, while 40
eV pass energy was used for the high-resolution regions at 120
and 60 s sweep times. Three different spots of sizes 800 × 400
μm2 were selected and scanned on each sample. A base pressure
of 8× 10−10 Torr wasmaintained in the chamber during analysis.
Casa XPS software was used for curve fittings. The background
subtraction was conducted with the Shirley method. The shapes
of the Ag 3d5/2 and Ag 3d3/2 peaks were fitted with a Gaussian
(30%)−Lorentzian (70%) peak function for all of the spectra
analyzed.

5.6. Optical Transmittance, Reflectance, and Band
Gap. The optical characterization of the deposited thin films
was performed using an Aquila nkd-8000 spectrophotometer.
This facility simultaneously collects both transmittance and
reflectance spectra using Pro-Optix software. The silver oxides
used for this characterization were deposited on glass slides at
varying oxygen flow rates and deposition powers each at a
deposition time of 2 min. The experiments were carried out in
the wavelength range of 350−1100 nm at an incidence angle of
10° for spectral analysis.

5.7. Atomic Absorption Spectroscopy. Silver ion release
was monitored using an AAnalyst 300 flame atomic absorption
spectrophotometer manufactured by PerkinElmer. All of the
operations of the instrument are computer-controlled through a
software. Selected samples deposited at 100, 200, 250, 300, 350,
and 400 W powers and a 10 sccm oxygen flow rate were used in
the study. Each glass microscope slide coated with the silver
oxide films was cut into four equal portions; then, an equal
amount of either water or saline solution was measured into
bottles and each of the pieces was dropped in the bottles and
sealed. The silver oxide surfaces were removed after 1, 6, 12, or
24 h contact with water and saline solution and used to evaluate
silver ion release.

5.8. Antimicrobial Tests and Killing Curves for
Microbes. Four microbes were selected for conducting the
antimicrobial tests in this research, namely, E. coli and P.
aeruginosa (Gram-negative) and S. epidermidis and S. aureus
(Gram-positive). Overnight bacterial cultures were grown in
Luria broth (LB) media. Ten milliliters of the LB was pipetted
out into sterile bottles into which bacteria were inoculated using
an inoculation loop sterilized by Bunsen flame and shaken at a
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speed of 150 rpm at 37 °C overnight. Then, 4.8 g of agar powder
was measured and out into a bottle. Furthermore, 10 g of Luria
broth powder was measured and added into the same bottle
containing the agar. Then, 400 mL of distilled water was used to
prepare a solution after gentle shaking. The bottle and contents
were autoclaved at 121 °C for 15 min. The prepared nutrient
agar was cooled slightly to the handling temperature of the plate.
The agar was plated in the Petri dishes and allowed to cool and
dry to be ready for culturing bacteria. The inoculation loop was
sterilized using the Bunsen burner blue flame before and after
use. Tips and other containers used during the preparation of the
material and testing were autoclaved at 121 °C for 15 min before
further using them.
Silver oxides were deposited at different conditions of forward

power and oxygen flow rate on glass microscope slides to test
their antimicrobial activity. A pure silver thin film prepared by
magnetron sputtering at 300 W forward power and glass
microscope slides, both washed ultrasonically, were used as
control samples. The bacterial cells were harvested from the
overnight culture that was incubated at 37 °C and suspended in
sterile phosphate-buffered saline (PBS). Then, 10 mL of the cell
suspension was pipetted out into an Eppendorf tube and
vortexed after washing twice in PBS. The optical density of the
microbes was measured at 570 nm, and the suspensions were
diluted using PBS to desired values (0.15 for E. coli and 0.2 for S.
aureus, S. epidermidis, and P. aeruginosa). Furthermore, 20 μL of
the bacterial suspension was pipetted out and dropped on the
silver oxide, silver, and glass slide surfaces and allowed to interact
with the surfaces for 0, 5, 10, 15, 20, 25, 30, 60, and 90 min. After
each time interval, sterile swaps were used to remove the
microbes from the surfaces and added into 1 mL of PBS within
10 s. The microbes were removed from the swaps by vortexing
for 20 s and sonicating for 5 min. A serial dilution of the bacterial
suspension was done using sterile distilled water, and 50 μL of
the desired diluent’s (first, second, third or fourth, fifth and
sixth) of the bacteria were dropped at three points on each
portion of the Petri dishes on which agar has been prepared. The
plated Petri dishes were cultured overnight in an incubator at 37
°C, and the colony forming units (CFU) were counted using the
Miles and Misra method. The log of CFU was plotted against
time to present the killing curves.
5.9. Statistical Analysis. The IBM SPSS statistics software

package, version 24 (IBM Corp, New York), was used for data
analysis with the results expressed as mean± standard deviation.
The microbial colonization on the surfaces is expressed in terms
of the colony forming units (CFU) as log10 CFU for the four
microbes tested. The Student t-test was used to compare the
effects of the variations in the conditions, i.e., forward power
during reactive magnetron sputtering used to prepare the silver
oxide-coated substrate surfaces (p < 0.05) and the microbial
colonization over time. A one-way ANOVA test was used to
compare the microbial colonization over time on the silver
oxide-coated substrate surfaces with that on the two control
surfaces of silver-coated and uncoated glass substrates. The post
hoc Tukey test was used to determine the statistical significance
of the test (p < 0.05). The Levene test for equality of variance
was used to determine which data set should be used to interpret
the results obtained in each case.
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