711 research outputs found

    Fatigue tests of axially loaded butt welds up to very high cycles

    Get PDF
    Fatigue strength curves that are established from fatigue tests provide a basis for the fatigue assessment applying nominal stress approach. In the codes valid for steel structures, like the EC 3, the fatigue strength curves for constant amplitude loading have a knee point in the transition region. The fatigue strength curve beyond this knee point is commonly assumed to be a horizontal asymptote. However, the behaviour of the fatigue strength curve in the area of very high cycles and more importantly the existence of an endurance limit are much discussed. In the case of welded joints the experimental data beyond 107 load cycles is limited due to the possibilities in testing. Testing techniques with high frequencies are necessary to obtain experimental data with very high cycles in a reasonable period of time. In this scope a testing device with approximately 390 Hz operates by alternating current magnets and using resonance amplification, which was developed by a third party. This testing device was investigated and advanced for the application of long term tests reaching 5·108 load cycles. Fatigue tests on axially loaded butt welds with constant amplitude loading are conducted in three test series until very high cycles. The fatigue tests include the area of high and very high cycles. The influence of test frequency and stress ratio is investigated

    How does particulate organic matter (POM) swelling affect soil -water interactions and soil structural stability on different scales?

    Get PDF
    Particulate organic matter (POM), root mucilage and synthetic polymers are swellable polymeric substances (“hydrogels”) which form a three-dimensional polymer network between soil particles. On the one hand, hydrogels can alter soil hydrological properties via their strong influence on water holding capacity and soil wettability. On the other hand, it has been recently shown that the presence of swollen hydrogel structures between soil particles can significantly contribute to soil structural stability. However, until now, only model polymer hydrogels have been used, and the findings still need to be transferred to soils which contain natural swellable organic substances. In this study, we investigated how the swelling of different POM fractions in soil contributes to soil-water-hydrogel interactions and to soil structural stability on different scales. We assumed that the swelling of easily available inter-aggregate POM (frPOM) and occluded intra-aggregate POM (iPOM) differ in their contribution to soil structural stability. For this purpose, we investigated the structural stability and soil-water interactions of a silty sand soil in a 2x2 nested design comprising tilled and non-tilled as well as compost-fertilized and non-fertilized sub-treatments. POM fractions were isolated by soil density fractionation and subsequently characterized for their swelling and water binding properties. Soil-water interactions in terms of water distribution and water mobility were assessed by one- and two-dimensional 1H-NMR relaxometry and pulsed-field-gradient (PFG) NMR. Results from 1H‑NMR measurements were linked with soil structural stability measurements conducted on the micro- and macroscale using soil rheology, wet sieving and crushing tests. On the micro- and macroscale, soil structural stability was higher for compost-fertilized samples than for non-fertilized with different effects of tillage. This was especially related to the presence of frPOM- and iPOM-associated water which revealed a significantly higher viscosity than mineral pore water. On the microscale, frPOM showed the highest contribution to soil structural stability, whereas iPOM predominantly stabilized the soil structure on the macroscale. The relationships suggest that the spatial location and hence the swellability of organic structures in soil could explain the nature of hydrogel-induced soil structural stability

    Short-term soil response under plastic mulching in strawberry cultivation

    Get PDF
    Plastic mulches (PM) are known for increasing soil temperature and retaining soil moisture, suppressing weeds and avoiding ground contact of on-soil growing products. Thus, the use of PM in agriculture has been significantly increased in the last years, with important economic benefits for the farmers. Most studies dealing with PM emphasize the positive effects of this management, yet recent reports have shown that the use of PM is linked to a decrease of SOM content, soil erosion, soil contamination with plastic residues and in some cases to a high mycotoxin production by soil fungi. This questions the sustainability of the intensive use of PM in agriculture. The aim of this study was to assess the short-term modification of soil physicochemical and microbial parameters under PM, compared to no-mulch (NM). The experiment was conducted in a 2016-planted strawberry field. For each management (PM vs. NM) five plots were selected. Cultivation of strawberry in both PM and NM was done in a ridge-furrow system with subsurface irrigation. Samples were collected prior to the planting (T0) and successively at two (T1) and four months (T2) after planting. Different depths were sampled in the ridges (0-10, 10-30 and 30-60 cm) and in the furrows (0-10 and 10-40 cm). The analysis of the quantity and quality of soil organic matter is ongoing and comprised soil physicochemical analysis: pH, electrical conductivity, water content, bulk density and stability, organic C and N and density fractionation. Moreover, soil microbiology was studied via soil microbial carbon and mycotoxin occurrence as indicator of fungal stress. Additionally, temperature, humidity and pH of soil were daily recorded using an in-field installed measuring station. The continuously recorded environmental data showed differences in the temperature patterns between PM and NM, with highest average temperature under plastic. As well, pH and humidity data indicated differences between the treatments

    Morphological aspects of male and female hands

    Get PDF
    This is an electronic version of an article published in Annals of Human Biology, 1996, 23(6), 491-494. Annals of Human Biology is available online at informaworldTM http://www.informaworld.com/smpp/content~content=a739339013~db=all~order=pageThis journal article discusses a series of hand radiographs from Gwynedd, North Wales, which were assessed for frequencies in digital and metacarpal formulae between the genders

    Classification of Invariant Star Products up to Equivariant Morita Equivalence on Symplectic Manifolds

    Full text link
    In this paper we investigate equivariant Morita theory for algebras with momentum maps and compute the equivariant Picard groupoid in terms of the Picard groupoid explicitly. We consider three types of Morita theory: ring-theoretic equivalence, *-equivalence and strong equivalence. Then we apply these general considerations to star product algebras over symplectic manifolds with a Lie algebra symmetry. We obtain the full classification up to equivariant Morita equivalence.Comment: 28 pages. Minor update, fixed typos

    Unzipping Kinetics of Double-Stranded DNA in a Nanopore

    Get PDF
    We studied the unzipping kinetics of single molecules of double-stranded DNA by pulling one of their two strands through a narrow protein pore. PCR analysis yielded the first direct proof of DNA unzipping in such a system. The time to unzip each molecule was inferred from the ionic current signature of DNA traversal. The distribution of times to unzip under various experimental conditions fit a simple kinetic model. Using this model, we estimated the enthalpy barriers to unzipping and the effective charge of a nucleotide in the pore, which was considerably smaller than previously assumed.Comment: 10 pages, 5 figures, Accepted: Physics Review Letter

    Shift of microbial communities and reduced enzymatic activity in soil under plastic mulching system in strawberry cultivation

    Get PDF
    The use of plastic mulching (PM) in agriculture has strongly increased in the last years. Improved water saving and higher soil temperature are some advantages of this management. Yet, an intensive use of PM has been recently linked to negative effects on soil quality. The aim of this study is thus to assess the effects of long-term plastic mulching (PM) on soil microbial indicators. PM was compared with the use of wheat straw mulching (SM), an also widely used mulch material. Samples were collected at two depths (0-5 and 5-10 cm) from strawberry fields, after 4-year management. Cultivation in PM and SM was done in a ridge-furrow system with subsurface irrigation. Soil characterization comprised soil texture and aggregate stability, soil organic carbon, pH and water content. Soil microbial analysis included: Soil microbial biomass (Cmic), a fraction of soil cultivable fungi (CFU values), soil bacteria (16S rRNA), denitrifying community (nirK, nirS, narG, napA genes), soil enzyme activity (C-Chitinase, P-Phosphatase and N Leucine-aminopeptidase), deoxynivalenol (DON) content and Cmic:Corg ratio. Positive effects on soil physicochemical properties were observed under PM as compared to SM, reflected by a higher soil carbon content and better aggregate stability (p>0.05). Yet, soil microbial analysis revealed some differences between managements. Cmic values were comparable in both systems, showing no differences in soil microbial biomass. In the same way, the analysis of functional genes of the N cycle and the activity of the enzymes P-Phosphatase and N Leucine-aminopeptidase was not affected by the mulching treatment. But, the abundance of bacteria (18%) and a fraction of soil cultivable fungi were reduced by respectively 18 and 62% under PM. Since the Cmic values remained similar between treatments, this accounts for a shift of microbial communities under PM. Additionally, C-Chitinase activity declined under PM. Interestingly, this enzyme correlated positively with CFU values (r=0.781, p=0.001), suggesting that a reduction of the activity is a consequence of the reduction of the fungal biomass. Additionally, a higher deoxynivalenol concentration (2.2 ± 2.4 µg kg-1) and a reduced Cmic:Corg ratio (1.3±0.3%) were observed under PM, indicative of less appropriate soil conditions after long-term PM management

    Analysis of Interactions and Support of Decision Making for the Implementation of Manufacturing Systems 4.0 Methods

    Get PDF
    For the successful implementation of Manufacturing Systems 4.0 (MS4.0) in medium-sized companies, a structured introduction process is required. Main objective of this process is the analysis and evaluation of MS4.0 methods in order to select those that suit best for each company. The foundation of this process is a structure model to classify and describe MS4.0 methods. A subsequent analysis of interactions among the methods supports the identification and evaluation of effective implementation strategies. Thereby, a model based on system dynamics is applied. Based on the results, the methods are strategically and financially evaluated to select the MS4.0 methods suited for implementation. Finally, a method roadmap can be derived to support management for the strategic decisions in regards of MS4.0 methods

    Fate and effects of silver nanoparticles at the aquatic-terrestrial interface: A floodplain mesocosm experiment

    Get PDF
    The production volume of engineered inorganic nanoparticles (EINP) successively increased over the last years. Once released into the natural environment, these particles may change their size and surface properties in interaction with other substances. This is expected to control their mobility and their impact on biochemical processes. However, the underlying processes are not fully understood yet. Transformation processes and long-term fate of citrate-coated silver nanoparticles (Ag NP) were investigated in an innovative floodplain mesocosm, which was run with river Rhine water and natural soil from an adjacent floodplain for 33 weeks. Flooding events were simulated every three weeks. The Ag NP with a concentration of 5 mg L-1 were continuously introduced into the water for three weeks followed by a three-week period without spiking. Every third week the ecotoxicological impact of Ag NP was determined by means of Gammarus mortality and feeding assays. At the end of the experiment, the total Ag concentrations were measured in profiles of the floodplain soil and the sediment as well as in algae that developed in the mesocosm. The total Ag concentration in the aquatic phase in the main zone as well as in the floodplain fluctuated according to the periodic Ag NP pulse. Further, significant amounts of Ag accumulated in algae (up to 4.7 mg g-1) and exposed leaves (up to 170 ÎĽg g-1). However, for the applied experimental conditions we did neither observed mortality nor sublethal effects on Gammarus feeding activity. More than 40 % of the Ag remained in the sediment of the main zone and 7 % were transported during flooding into the floodplain soil. Furthermore, 0.5 % of the Ag was still in the water phase. Most of the particles were immobilized in the top layer of the sediments and soil. Only very little transport in deeper soil layers was observed in the soil columns and sediment. Accumulation in algae, sediment, and soil is alarming for long-term environmental impact assessments and the long lifetime in the aqueous phase suggests long-range transport of Ag NP in rivers
    • …
    corecore