11 research outputs found

    Properties of Sarychev sulphate aerosols over the Arctic

    Get PDF
    Aerosols from the Sarychev Peak volcano entered the Arctic region less than a week after the strongest SO2 eruption on June 15 and 16, 2009 and had, by the second week in July, spread out over the entire Arctic region. These predominantly stratospheric aerosols were determined to be sub-micron in size and inferred to be composed of sulphates produced from the condensation of SO2 gases emitted during the eruption. Average (500 nm) Sarychev-induced stratospheric optical depths over the Polar Environmental Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut, Canada were found to be between 0.03 and 0.05 during the months of July and August, 2009. This estimate, derived from sunphotometry and integrated lidar backscatter profiles was consistent with averages derived from lidar estimates over Ny-Ålesund (Spitsbergen). The Sarychev SOD e-folding time at Eureka, deduced from lidar profiles, was found to be approximately 4 months relative to a regression start date of July 27. These profiles initially revealed the presence of multiple Sarychev plumes between the tropopause and about 17 km altitude. After about two months, the complex vertical plume structures had collapsed into fewer, more homogeneous plumes located near the tropopause. It was found that the noisy character of daytime backscatter returns induced an artifactual minimum in the temporal, pan-Arctic, CALIOP SOD response to Sarychev sulphates. A depolarization ratio discrimination criterion was used to separate the CALIOP stratospheric layer class into a low depolarization subclass which was more representative of Sarychev sulphates. Post-SAT (post Sarychev Arrival Time) retrievals of the fine mode effective radius (reff,f) and the logarithmic standard deviation for two Eureka sites and Thule, Greenland were all close to 0.25 μm and 1.6 respectively. The stratospheric analogue to the columnar reff,f average was estimated to be reff,f(+) = 0.29 μm for Eureka data. Stratospheric, Raman lidar retrievals at Ny-Ålesund, yielded a post-SAT average of reff,f(+) = 0.27 μm. These results are ~ 50% larger than the background stratospheric-aerosol value. They are also about a factor of two larger than modeling values used in recent publications or about a factor of five larger in terms of (per particle) backscatter cross section

    Advanced NO2 retrieval technique for the Brewer spectrophotometer applied to the 20-year record in Rome, Italy

    No full text
    A re-evaluated data set of nitrogen dioxide (NO2) column densities over Rome for the years 1996 to 2017 is here presented. This long-term record is obtained from ground-based direct sun measurements with a MkIV Brewer spectrophotometer (serial number #067) and further reprocessed using a novel algorithm. Compared to the original Brewer algorithm, the new method includes updated NO2 absorption cross sections and Rayleigh scattering coefficients, and it accounts for additional atmospheric compounds and instrumental artefacts, such as the spectral transmittance of the filters, the alignment of the wavelength scale, and internal temperature. Moreover, long-term changes in the Brewer radiometric sensitivity are tracked using statistical methods for in-field calibration. The resulting series presents only a few (about 30) periods with missing data longer than 1 week and features NO2 retrievals for more than 6100ĝ€¯d, covering nearly 80ĝ€¯% of the considered 20-year period. The high quality of the data is demonstrated by two independent comparisons. In the first intensive campaign, Brewer #067 is compared against another Brewer (#066), recently calibrated at the Izaña Atmospheric Observatory through the Langley method and there compared to reference instrumentation from the Network for the Detection of Atmospheric Composition Change (NDACC). Data from this campaign show a highly significant Pearson's correlation coefficient of 0.90 between the two series of slant column densities (SCDs), slope 0.98 and offset 0.05ĝ€¯DU (Dobson units; 1.3×1015ĝ€¯molec.cm-2). The average bias between the vertical column densities is 0.03ĝ€¯DU (8.1×1014ĝ€¯molec.cm-2), well within the combined uncertainty of both instruments. Brewer #067 is also independently compared with new-generation instrumentation, a co-located Pandora spectrometer (#117), over a 1-year-long period (2016-2017) at Sapienza University of Rome, showing linear correlation indices above 0.96 between slant column densities, slope of 0.97, and offset of 0.02ĝ€¯DU (5.4×1014ĝ€¯molec.cm-2). The average bias between vertical column densities is negligible (-0.002ĝ€¯DU or -5.4×1013ĝ€¯molec.cm-2). This, incidentally, represents the first intercomparison of NO2 retrievals between a MkIV Brewer and a Pandora instrument. Owing to its accuracy and length, the Brewer data set collected in Rome can be useful for satellite calibration/validation exercises, comparison with photochemical models, and better aerosol optical depth estimates (NO2 optical depth climatology). In addition, it can be employed to identify long-term trends in NO2 column densities in a metropolitan environment, over two decades witnessing important changes in environmental policies, emission loads and composition, and the effect of a worldwide economic recession, to offer just a few examples. The method can be replicated on the more than 80 MkIV spectrophotometers operating worldwide in the frame of the international Brewer network. The NO2 data set described in this paper can be freely accessed at 10.5281/zenodo.4715219

    Validation of ACE and OSIRIS ozone and NO<sub>2</sub> measurements using ground-based instruments at 80° N

    Get PDF
    The Optical Spectrograph and Infra-Red Imager System (OSIRIS) and the Atmospheric Chemistry Experiment (ACE) have been taking measurements from space since 2001 and 2003, respectively. This paper presents intercomparisons between ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by ground-based instruments at the Polar Environment Atmospheric Research Laboratory (PEARL), which is located at Eureka, Canada (80° N, 86° W) and is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). The ground-based instruments included in this study are four zenith-sky differential optical absorption spectroscopy (DOAS) instruments, one Bruker Fourier transform infrared spectrometer (FTIR) and four Brewer spectrophotometers. Ozone total columns measured by the DOAS instruments were retrieved using new Network for the Detection of Atmospheric Composition Change (NDACC) guidelines and agree to within 3.2%. The DOAS ozone columns agree with the Brewer spectrophotometers with mean relative differences that are smaller than 1.5%. This suggests that for these instruments the new NDACC data guidelines were successful in producing a homogenous and accurate ozone dataset at 80° N. Satellite 14-52 km ozone and 17-40 km NO2 partial columns within 500 km of PEARL were calculated for ACE-FTS Version 2.2 (v2.2) plus updates, ACE-FTS v3.0, ACE-MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) v1.2 and OSIRIS SaskMART v5.0x ozone and Optimal Estimation v3.0 NO2 data products. The new ACE-FTS v3.0 and the validated ACE-FTS v2.2 partial columns are nearly identical, with mean relative differences of 0.0 ± 0.2% for ozone and -0.2 ± 0.1% for v2.2 minus v3.3 NO2. Ozone columns were constructed from 14-52 km satellite and 0-14 km ozonesonde partial columns and compared with the ground-based total column measurements. The satellite-plus-sonde measurements agree with the ground-based ozone total columns with mean relative differences of 0.1-7.3%. For NO2, partial columns from 17 km upward were scaled to noon using a photochemical model. Mean relative differences between OSIRIS, ACE-FTS and ground-based NO2 measurements do not exceed 20%. ACE-MAESTRO measures more NO2 than the other instruments, with mean relative differences of 25-52%. Seasonal variation in the differences between partial columns is observed, suggesting that there are systematic errors in the measurements, the photochemical model corrections, and/or in the coincidence criteria. For ozone spring-time measurements, additional coincidence criteria based on stratospheric temperature and the location of the polar vortex were found to improve agreement between some of the instruments. For ACE-FTS v2.2 minus Bruker FTIR, the 2007-2009 spring-time mean relative difference improved from -5.0 ± 0.4% to -3.1 ± 0.8% with the dynamical selection criteria. This was the largest improvement, likely because both instruments measure direct sunlight and therefore have well-characterized lines-of-sight compared with scattered sunlight measurements. For NO2, the addition of a ±1° latitude coincidence criterion improved spring-time intercomparison results, likely due to the sharp latitudinal gradient of NO2 during polar sunrise. The differences between satellite and ground-based measurements do not show any obvious trends over the missions, indicating that both the ACE and OSIRIS instruments continue to perform well
    corecore