496 research outputs found

    IPSC-derived neural stem cells act via kinase inhibition to exert neuroprotective effects in spinal muscular atrophy with respiratory distress type 1

    Get PDF
    Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a motor neuron disease caused by mutations in the IGHMBP2 gene, without a cure. Here, we demonstrate that neural stem cells (NSCs) from human-induced pluripotent stem cells (iPSCs) have therapeutic potential in the context of SMARD1. We show that upon transplantation NSCs can appropriately engraft and differentiate in the spinal cord of SMARD1 animals, ameliorating their phenotype, by protecting their endogenous motor neurons. To evaluate the effect of NSCs in the context of human disease, we generated human SMARD1-iPSCs motor neurons that had a significantly reduced survival and axon length. Notably, the coculture with NSCs ameliorate these disease features, an effect attributable to the production of neurotrophic factors and their dual inhibition of GSK-3 and HGK kinases. Our data support the role of iPSC as SMARD1 disease model and their translational potential for therapies in motor neuron disorders

    Peat soil burning in the Mezzano lowland (Po Plain, Italy): triggering mechanisms and environmental consequences.

    Get PDF
    The effects of peat burning on organic-rich agricultural soils of the Mezzano Lowland (NE Italy) were evaluated on soil profiles variously affected by smoldering. Profiles were investigated for pH, electrical conductivity, bulk density, elemental and isotopic composition of distinct carbon (and nitrogen) fractions. The results suggest that the horizons affected by carbon loss lie at depths 10–70 cm, where the highest temperatures are developed. We suggest that the exothermal oxidation of methane (mediated by biological activity) plays a significant role in the triggering mechanism. In the interested soils we estimated a potential loss of Soil Organic Carbon of approximately 110 kg m−2 within the first meter, corresponding to 580 kg CO2 m−3. The released greenhouse gas is coupled with a loss of soil structure and nutrients. Moreover, the process plausibly triggers mobility of metals bound in organometallic complexes. All these consequences negatively affect the environment, the agricultural activities and possibly also health of the local people

    Post-acute delivery of erythropoietin induces stroke recovery by promoting perilesional tissue remodelling and contralesional pyramidal tract plasticity

    Get PDF
    The promotion of post-ischaemic motor recovery remains a major challenge in clinical neurology. Recently, plasticity-promoting effects have been described for the growth factor erythropoietin in animal models of neurodegenerative diseases. To elucidate erythropoietin's effects in the post-acute ischaemic brain, we examined how this growth factor influences functional neurological recovery, perilesional tissue remodelling and axonal sprouting of the corticorubral and corticobulbar tracts, when administered intra-cerebroventricularly starting 3 days after 30 min of middle cerebral artery occlusion. Erythropoietin administered at 10 IU/day (but not at 1 IU/day), increased grip strength of the contralesional paretic forelimb and improved motor coordination without influencing spontaneous locomotor activity and exploration behaviour. Neurological recovery by erythropoietin was associated with structural remodelling of ischaemic brain tissue, reflected by enhanced neuronal survival, increased angiogenesis and decreased reactive astrogliosis that resulted in reduced scar formation. Enhanced axonal sprouting from the ipsilesional pyramidal tract into the brainstem was observed in vehicle-treated ischaemic compared with non-ischaemic animals, as shown by injection of dextran amines into both motor cortices. Despite successful remodelling of the perilesional tissue, erythropoietin enhanced axonal sprouting of the contralesional, but not ipsilesional pyramidal tract at the level of the red and facial nuclei. Moreover, molecular biological and histochemical studies revealed broad anti-inflammatory effects of erythropoietin in both hemispheres together with expression changes of plasticity-related molecules that facilitated contralesional axonal growth. Our study establishes a plasticity-promoting effect of erythropoietin after stroke, indicating that erythropoietin acts via recruitment of contralesional rather than of ipsilesional pyramidal tract projection

    Dystonia-ataxia syndrome with permanent torsional nystagmus caused by ECHS1 deficiency

    Get PDF
    Biallelic mutations in ECHS1, encoding the mitochondrial enoyl-CoA hydratase, have been associated with mitochondrial encephalopathies with basal ganglia involvement. Here, we describe a novel clinical presentation consisting of dystonia-ataxia syndrome with hearing loss and a peculiar torsional nystagmus observed in two adult siblings. The presence of a 0.9-ppm peak at MR spectroscopy analysis suggested the accumulation of branched-chain amino acids. Exome sequencing in index probands identified two ECHS1 mutations, one of which was novel (p.V82L). ECHS1 protein levels and residual activities were reduced in patients' fibroblasts. This paper expands the phenotypic spectrum observed in patients with impaired valine catabolism

    Loss of the nucleoporin Aladin in central nervous system and fibroblasts of Allgrove Syndrome

    Get PDF
    Allgrove syndrome (AS) is a rare disease with broad neurological involvement. Neurodegeneration can affect spinal motor neurons, Purkinje cells, striatal neurons, and the autonomic system. The mechanisms that lead to neuronal loss are still unclear. Recessive mutations in the AAAS gene affect the encoded protein Aladin, which would normally localize to the cytoplasmic face of the nuclear membrane as part of the nuclear pore complex (NPC). While the NPC is known to be a key factor for nucleo-cytoplasmic transport, the precise role of Aladin has not been elucidated yet. Here, we explored the consequences of the homozygous AAAS mutation c.464G>A (p.R155H) in central nervous system tissues and fibroblasts of a novel AS patient presenting motor neuron disease, cerebellar ataxia, and autonomic dysfunction. Neuropathological analyses showed severe loss of motor neurons and Purkinje cells, with significant reduction in the perinuclear expression of Aladin. A reduced amount of protein was detected in the nuclear membrane fraction of the patient's brain. RNA analysis revealed a significant reduction of the transcript AAAS-1, while the AAAS-2 transcript was upregulated in fibroblasts. To our knowledge, this is the first study to demonstrate the effects of AAAS mutations in human central nervous system

    Endothelin receptor B antagonists decrease glioma cell viability independently of their cognate receptor

    Get PDF
    Background: Endothelin receptor antagonists inhibit the progression of many cancers, but research into their influence on glioma has been limited. Methods: We treated glioma cell lines, LN-229 and SW1088, and melanoma cell lines, A375 and WM35, with two endothelin receptor type B (ETRB)-specific antagonists, A-192621 and BQ788, and quantified viable cells by the capacity of their intracellular esterases to convert non-fluorescent calcein AM into green-fluorescent calcein. We assessed cell proliferation by labeling cells with carboxyfluorescein diacetate succinimidyl ester and quantifying the fluorescence by FACS analysis. We also examined the cell cycle status using BrdU/propidium iodide double staining and FACS analysis. We evaluated changes in gene expression by microarray analysis following treatment with A-192621 in glioma cells. We examined the role of ETRB by reducing its expression level using small interfering RNA (siRNA). Results: We report that two ETRB-specific antagonists, A-192621 and BQ788, reduce the number of viable cells in two glioma cell lines in a dose- and time-dependent manner. We describe similar results for two melanoma cell lines. The more potent of the two antagonists, A-192621, decreases the mean number of cell divisions at least in part by inducing a G2/M arrest and apoptosis. Microarray analysis of the effects of A-192621 treatment reveals up-regulation of several DNA damage-inducible genes. These results were confirmed by real-time RT-PCR. Importantly, reducing expression of ETRB with siRNAs does not abrogate the effects of either A-192621 or BQ788 in glioma or melanoma cells. Furthermore, BQ123, an endothelin receptor type A (ETRA)-specific antagonist, has no effect on cell viability in any of these cell lines, indicating that the ETRB-independent effects on cell viability exhibited by A-192621 and BQ788 are not a result of ETRA inhibition. Conclusion: While ETRB antagonists reduce the viability of glioma cells in vitro, it appears unlikely that this effect is mediated by ETRB inhibition or cross-reaction with ETRA. Instead, we present evidence that A-192621 affects glioma and melanoma viability by activating stress/DNA damage response pathways, which leads to cell cycle arrest and apoptosis. This is the first evidence linking ETRB antagonist treatment to enhanced expression of DNA damage-inducible genes

    Baseline computed-tomography (CT)-evaluated sarcopenia predicts toxicity from first-line chemotherapy in metastatic gastric cancer (mGC) patients

    Get PDF
    Introduction: The impact of sarcopenia as a predictor of poor prognosis and its association with chemotherapy toxicity have been explored in different cancer types but remain controversial in mGC. Our aim was to explore the correlation between sarcopenia, evaluated at baseline CT scan, and toxicity and efficacy of first-line therapy. Methods: We retrospectively analyzed pre-treatment CT scans from 78 mGC patients treated with first-line doublet chemotherapy comprising oxaliplatin and 5-fluorouracil/leucovorin or capecitabine (trastuzumab was administered in case of HER2-positive disease). Sarcopenia was defined according to previously published criteria (Martin L et al. J Clin Oncol 2013) by the use of the skeletal muscle index (SMI) and body mass index (BMI), according to gender-specific cut-off values. SMI was calculated as follows: cross-sectional skeletal muscle area (SMA) measured at the level of the third lumbar vertebra / (height)2 (m2). Toxicities were graded according to NCI CTCAE v.4.0. Association between the presence of sarcopenia and different adverse events was evaluated by Chi-square test. Correlation with response rate (RR, evaluated according to RECIST criteria 1.1), progression-free survival (PFS) and overall survival (OS) was assessed by the use of the log-rank test. Results: Sarcopenia was evident in 34 (44%) patients. We observed a significant association between the presence of sarcopenia at baseline assessment and a higher risk of severe (i.e. grade 3-4) neutropenia (38% versus 18%; p = 0.048) and a higher risk of any grade mucosal toxicities (56% versus 34%; p = 0.045). None of the other investigated clinical factors (comprising age, gender, performance status, sites of metastases and previous surgery on primary tumor) was associated with the risk of toxicity. Neither sarcopenia nor the other evaluated clinical parameters were associated with outcome as measured by RR, PFS, and OS: the only exception was performance status, which was confirmed a major prognostic determinant in terms of PFS and OS. Conclusion: Our experience identified sarcopenia as a potential determinant of the risk of hematologic and mucosal toxicities from first-line platinum plus fluoropyrimidine chemotherapy in mGC patients. Sarcopenia was apparently not associated with benefit from treatment and survival, but larger studies are needed to address this issue. Strategies aiming at improving the nutritional status of mGC patients are warranted to optimize the risk-to-benefit ratio of available treatments

    Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches

    Get PDF
    Spinal muscular atrophy (SMA) is a primary genetic cause of infant mortality due to mutations in the Survival Motor Neuron (SMN) 1 gene. No cure is available. Antisense oligonucleotides (ASOs) aimed at increasing SMN levels from the paralogous SMN2 gene represent a possible therapeutic strategy. Here, we tested in SMA human induced pluripotent stem cells (iPSCs) and iPSC-differentiated motor neurons, three different RNA approaches based on morpholino antisense targeting of the ISSN-1, exon-specific U1 small nuclear RNA (ExSpeU1), and Transcription Activator-Like Effector-Transcription Factor (TALE-TF). All strategies act modulating SMN2 RNA: ASO affects exon 7 splicing, TALE-TF increase SMN2 RNA acting on the promoter, while ExSpeU1 improves pre-mRNA processing. These approaches induced up-regulation of full-length SMN mRNA and differentially affected the Delta-7 isoform: ASO reduced this isoform, while ExSpeU1 and TALE-TF increased it. All approaches upregulate the SMN protein and significantly improve the in vitro SMA motor neurons survival. Thus, these findings demonstrate that therapeutic tools that act on SMN2 RNA are able to rescue the SMA disease phenotype. Our data confirm the feasibility of SMA iPSCs as in vitro disease models and we propose novel RNA approaches as potential therapeutic strategies for treating SMA and other genetic neurological disorders
    • …
    corecore