237 research outputs found

    Interpreting Metabolomic Profiles using Unbiased Pathway Models

    Get PDF
    Human disease is heterogeneous, with similar disease phenotypes resulting from distinct combinations of genetic and environmental factors. Small-molecule profiling can address disease heterogeneity by evaluating the underlying biologic state of individuals through non-invasive interrogation of plasma metabolite levels. We analyzed metabolite profiles from an oral glucose tolerance test (OGTT) in 50 individuals, 25 with normal (NGT) and 25 with impaired glucose tolerance (IGT). Our focus was to elucidate underlying biologic processes. Although we initially found little overlap between changed metabolites and preconceived definitions of metabolic pathways, the use of unbiased network approaches identified significant concerted changes. Specifically, we derived a metabolic network with edges drawn between reactant and product nodes in individual reactions and between all substrates of individual enzymes and transporters. We searched for “active modules”—regions of the metabolic network enriched for changes in metabolite levels. Active modules identified relationships among changed metabolites and highlighted the importance of specific solute carriers in metabolite profiles. Furthermore, hierarchical clustering and principal component analysis demonstrated that changed metabolites in OGTT naturally grouped according to the activities of the System A and L amino acid transporters, the osmolyte carrier SLC6A12, and the mitochondrial aspartate-glutamate transporter SLC25A13. Comparison between NGT and IGT groups supported blunted glucose- and/or insulin-stimulated activities in the IGT group. Using unbiased pathway models, we offer evidence supporting the important role of solute carriers in the physiologic response to glucose challenge and conclude that carrier activities are reflected in individual metabolite profiles of perturbation experiments. Given the involvement of transporters in human disease, metabolite profiling may contribute to improved disease classification via the interrogation of specific transporter activities

    Expanding the set of rhodococcal Baeyer–Villiger monooxygenases by high-throughput cloning, expression and substrate screening

    Get PDF
    To expand the available set of Baeyer–Villiger monooxygenases (BVMOs), we have created expression constructs for producing 22 Type I BVMOs that are present in the genome of Rhodococcus jostii RHA1. Each BVMO has been probed with a large panel of potential substrates. Except for testing their substrate acceptance, also the enantioselectivity of some selected BVMOs was studied. The results provide insight into the biocatalytic potential of this collection of BVMOs and expand the biocatalytic repertoire known for BVMOs. This study also sheds light on the catalytic capacity of this large set of BVMOs that is present in this specific actinomycete. Furthermore, a comparative sequence analysis revealed a new BVMO-typifying sequence motif. This motif represents a useful tool for effective future genome mining efforts.

    Proteomic analysis identifies proteins that continue to grow hepatic stem-like cells without differentiation

    Get PDF
    To understand the molecular mechanism underlying vigorous proliferative activity of hepatic stem-like (HSL) cells, we performed two-dimensional electrophoresis to identify the proteins statistically more abundant in rapidly growing undifferentiated HSL cells than in sodium butyrate-treated differentiated HSL cells. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry and Mascot search identified 6 proteins including prohibitin, vimentin, ezrin, annexin A3, acidic ribosomal phosphoprotein P0 and Grp75. Prohibitin and vimentin control the mitogen-activated protein (MAP) kinase pathway. Ezrin is phosphorylated by various protein-tyrosine kinases and modulates interactions between cytoskeletal and membrane proteins. Annexin A3 has a role in DNA synthesis. Acidic ribosomal phosphoprotein P0 and Grp75 play in protein synthesis. These results suggest that the proteins related to the MAP kinase cascade had some role in continuous proliferation of HSL cells without differentiation

    Rule-based modelling provides an extendable framework for comparing candidate mechanisms underpinning clathrin polymerisation

    Get PDF
    Abstract Polymerisation of clathrin is a key process that underlies clathrin-mediated endocytosis. Clathrin-coated vesicles are responsible for cell internalization of external substances required for normal homeostasis and life –sustaining activity. There are several hypotheses describing formation of closed clathrin structures. According to one of the proposed mechanisms cage formation may start from a flat lattice buildup on the cellular membrane, which is later transformed into a curved structure. Creation of the curved surface requires rearrangement of the lattice, induced by additional molecular mechanisms. Different potential mechanisms require a modeling framework that can be easily modified to compare between them. We created an extendable rule-based model that describes polymerisation of clathrin molecules and various scenarios of cage formation. Using Global Sensitivity Analysis (GSA) we obtained parameter sets describing clathrin pentagon closure and the emergence/production and closure of large-size clathrin cages/vesicles. We were able to demonstrate that the model can reproduce budding of the clathrin cage from an initial flat array

    Dynamics of Kv1 Channel Transport in Axons

    Get PDF
    Concerted actions of various ion channels that are precisely targeted along axons are crucial for action potential initiation and propagation, and neurotransmitter release. However, the dynamics of channel protein transport in axons remain unknown. Here, using time-lapse imaging, we found fluorescently tagged Kv1.2 voltage-gated K+ channels (YFP-Kv1.2) moved bi-directionally in discrete puncta along hippocampal axons. Expressing Kvβ2, a Kv1 accessory subunit, markedly increased the velocity, the travel distance, and the percentage of moving time of these puncta in both anterograde and retrograde directions. Suppressing the Kvβ2-associated protein, plus-end binding protein EB1 or kinesin II/KIF3A, by siRNA, significantly decreased the velocity of YFP-Kv1.2 moving puncta in both directions. Kvβ2 mutants with disrupted either Kv1.2-Kvβ2 binding or Kvβ2-EB1 binding failed to increase the velocity of YFP-Kv1.2 puncta, confirming a central role of Kvβ2. Furthermore, fluorescently tagged Kv1.2 and Kvβ2 co-moved along axons. Surprisingly, when co-moving with Kv1.2 and Kvβ2, EB1 appeared to travel markedly faster than its plus-end tracking. Finally, using fission yeast S. pombe expressing YFP-fusion proteins as reference standards to calibrate our microscope, we estimated the numbers of YFP-Kv1.2 tetramers in axonal puncta. Taken together, our results suggest that proper amounts of Kv1 channels and their associated proteins are required for efficient transport of Kv1 channel proteins along axons

    Simvastatin is associated with a reduced incidence of dementia and Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Statins are a class of medications that reduce cholesterol by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Whether statins can benefit patients with dementia remains unclear because of conflicting results. We hypothesized that some of the confusion in the literature might arise from differences in efficacy of different statins. We used a large database to compare the action of several different statins to investigate whether some statins might be differentially associated with a reduction in the incidence of dementia and Parkinson's disease.</p> <p>Methods</p> <p>We analyzed data from the decision support system of the US Veterans Affairs database, which contains diagnostic, medication and demographic information on 4.5 million subjects. The association of lovastatin, simvastatin and atorvastatin with dementia was examined with Cox proportional hazard models for subjects taking statins compared with subjects taking cardiovascular medications other than statins, after adjusting for covariates associated with dementia or Parkinson's disease.</p> <p>Results</p> <p>We observed that simvastatin is associated with a significant reduction in the incidence of dementia in subjects ≥65 years, using any of three models. The first model incorporated adjustment for age, the second model included adjusted for three known risk factors for dementia, hypertension, cardiovascular disease or diabetes, and the third model incorporated adjustment for the Charlson index, which is an index that provides a broad assessment of chronic disease. Data were obtained for over 700000 subjects taking simvastatin and over 50000 subjects taking atorvastatin who were aged >64 years. Using model 3, the hazard ratio for incident dementia for simvastatin and atorvastatin are 0.46 (CI 0.44–0.48, <it>p </it>< 0.0001) and 0.91 (CI 0.80–1.02, <it>p </it>= 0.11), respectively. Lovastatin was not associated with a reduction in the incidence of dementia. Simvastatin also exhibited a reduced hazard ratio for newly acquired Parkinson's disease (HR 0.51, CI 0.4–0.55, <it>p </it>< 0.0001).</p> <p>Conclusion</p> <p>Simvastatin is associated with a strong reduction in the incidence of dementia and Parkinson's disease, whereas atorvastatin is associated with a modest reduction in incident dementia and Parkinson's disease, which shows only a trend towards significance.</p

    An Alpha-Catulin Homologue Controls Neuromuscular Function through Localization of the Dystrophin Complex and BK Channels in Caenorhabditis elegans

    Get PDF
    The large conductance, voltage- and calcium-dependent potassium (BK) channel serves as a major negative feedback regulator of calcium-mediated physiological processes and has been implicated in muscle dysfunction and neurological disorders. In addition to membrane depolarization, activation of the BK channel requires a rise in cytosolic calcium. Localization of the BK channel near calcium channels is therefore critical for its function. In a genetic screen designed to isolate novel regulators of the Caenorhabditis elegans BK channel, SLO-1, we identified ctn-1, which encodes an α-catulin homologue with homology to the cytoskeletal proteins α-catenin and vinculin. ctn-1 mutants resemble slo-1 loss-of-function mutants, as well as mutants with a compromised dystrophin complex. We determined that CTN-1 uses two distinct mechanisms to localize SLO-1 in muscles and neurons. In muscles, CTN-1 utilizes the dystrophin complex to localize SLO-1 channels near L-type calcium channels. In neurons, CTN-1 is involved in localizing SLO-1 to a specific domain independent of the dystrophin complex. Our results demonstrate that CTN-1 ensures the localization of SLO-1 within calcium nanodomains, thereby playing a crucial role in muscles and neurons
    corecore