22 research outputs found

    Erratum: A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018 (Environmental Research Letters (2021) 16 (073005) DOI: 10.1088/1748-9326/abee4e)

    Full text link
    This corrigendum resolves an error in figure 17 and clarifies the scope of the cement sector in figure 2. Figure 17 in the original published manuscript depicts a Kaya identity for the agriculture, forestry and other land uses (AFOLU) sector. We unintentionally excluded land-use CO2 emissions from total greenhouse gas (GHG) emissions in this identity, and depicted only agricultural GHG emissions

    A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018

    Get PDF
    Global greenhouse gas (GHG) emissions can be traced to five economic sectors: energy, industry, buildings, transport and AFOLU (agriculture, forestry and other land uses). In this topical review, we synthesise the literature to explain recent trends in global and regional emissions in each of these sectors. To contextualise our review, we present estimates of GHG emissions trends by sector from 1990 to 2018, describing the major sources of emissions growth, stability and decline across ten global regions. Overall, the literature and data emphasise that progress towards reducing GHG emissions has been limited. The prominent global pattern is a continuation of underlying drivers with few signs of emerging limits to demand, nor of a deep shift towards the delivery of low and zero carbon services across sectors. We observe a moderate decarbonisation of energy systems in Europe and North America, driven by fuel switching and the increasing penetration of renewables. By contrast, in rapidly industrialising regions, fossil-based energy systems have continuously expanded, only very recently slowing down in their growth. Strong demand for materials, floor area, energy services and travel have driven emissions growth in the industry, buildings and transport sectors, particularly in Eastern Asia, Southern Asia and South-East Asia. An expansion of agriculture into carbon-dense tropical forest areas has driven recent increases in AFOLU emissions in Latin America, South-East Asia and Africa. Identifying, understanding, and tackling the most persistent and climate-damaging trends across sectors is a fundamental concern for research and policy as humanity treads deeper into the Anthropocene

    Modeling India's energy future using a bottom-up approach

    No full text

    Energy efficiency outlook in China's urban buildings sector through 2030

    No full text
    This study uses bottom-up modeling framework in order to quantify potential energy savings and emission reduction impacts from the implementation of energy efficiency programs in the building sector in China. Policies considered include (1) accelerated building codes in residential and commercial buildings, (2) increased penetration of district heat metering and controls, (3) district heating efficiency improvement, (4) building energy efficiency labeling programs and (5) retrofits of existing commercial buildings. Among these programs, we found that the implementation of building codes provide by far the largest savings opportunity, leading to an overall 17% reduction in overall space heating and cooling demand relative to the baseline. Second are energy efficiency labels with 6%, followed by reductions of losses associated with district heating representing 4% reduction and finally, retrofits representing only about a 1% savings

    Assessment of bottom-up sectoral and regional mitigation potentials

    No full text
    The greenhouse gas mitigation potential of different economic sectors in three world regions are estimated using a bottom-up approach. These estimates provide updates of the numbers reported in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). This study is part of a larger project aimed at comparing greenhouse gas mitigation potentials from bottom-up and top-down approaches. The sectors included in the analysis are energy supply, transport, industry and the residential and service sector. The mitigation potentials range from 11 to 15 GtCO2eq. This is 26–38% of the baseline in 2030 and 47–68% relative to the year 2000. Potential savings are estimated for different cost levels. The total potential at negative costs is estimated at 5–8% relative to the baseline, with the largest share in the residential and service sector and the highest reduction percentage for the transport and industry sectors. These (negative) costs include investment, operation and maintenance and fuel costs and revenues at moderate discount rates of 3–10%. At costs below 100 US$/tCO2, the largest potential reductions in absolute terms are estimated in the energy supply sector, while the transport sector has the lowest reduction potential
    corecore