614 research outputs found
Area Distribution of Elastic Brownian Motion
We calculate the excursion and meander area distributions of the elastic
Brownian motion by using the self adjoint extension of the Hamiltonian of the
free quantum particle on the half line. We also give some comments on the area
of the Brownian motion bridge on the real line with the origin removed. We will
stress on the power of self adjoint extension to investigate different possible
boundary conditions for the stochastic processes.Comment: 18 pages, published versio
The role of the agent's outside options in principal-agent relationships
We consider a principal-agent model of adverse selection where, in order to trade with the principal,
the agent must undertake a relationship-specific investment which affects his outside option to trade,
i.e. the payoff that he can obtain by trading with an alternative principal. This creates a distinction
between the agent’s ex ante (before investment) and ex post (after investment) outside options to trade.
We investigate the consequences of this distinction, and show that whenever an agent’s ex ante and ex
post outside options differ, this may equip the principal with an additional tool for screening among
different agent types, by randomizing over the probability with which trade occurs once the agent
has undertaken the investment. In turn, this may enhance the efficiency of the optimal second-best
contract
Bessel bridges decomposition with varying dimension. Applications to finance
We consider a class of stochastic processes containing the classical and
well-studied class of Squared Bessel processes. Our model, however, allows the
dimension be a function of the time. We first give some classical results in a
larger context where a time-varying drift term can be added. Then in the
non-drifted case we extend many results already proven in the case of classical
Bessel processes to our context. Our deepest result is a decomposition of the
Bridge process associated to this generalized squared Bessel process, much
similar to the much celebrated result of J. Pitman and M. Yor. On a more
practical point of view, we give a methodology to compute the Laplace transform
of additive functionals of our process and the associated bridge. This permits
in particular to get directly access to the joint distribution of the value at
t of the process and its integral. We finally give some financial applications
to illustrate the panel of applications of our results
Solution of the Fokker-Planck equation with a logarithmic potential and mixed eigenvalue spectrum
Motivated by a problem in climate dynamics, we investigate the solution of a
Bessel-like process with negative constant drift, described by a Fokker-Planck
equation with a potential V(x) = - [b \ln(x) + a\, x], for b>0 and a<0. The
problem belongs to a family of Fokker-Planck equations with logarithmic
potentials closely related to the Bessel process, that has been extensively
studied for its applications in physics, biology and finance. The Bessel-like
process we consider can be solved by seeking solutions through an expansion
into a complete set of eigenfunctions. The associated imaginary-time
Schroedinger equation exhibits a mix of discrete and continuous eigenvalue
spectra, corresponding to the quantum Coulomb potential describing the bound
states of the hydrogen atom. We present a technique to evaluate the
normalization factor of the continuous spectrum of eigenfunctions that relies
solely upon their asymptotic behavior. We demonstrate the technique by solving
the Brownian motion problem and the Bessel process both with a negative
constant drift. We conclude with a comparison with other analytical methods and
with numerical solutions.Comment: 21 pages, 8 figure
On exact time-averages of a massive Poisson particle
In this work we study, under the Stratonovich definition, the problem of the
damped oscillatory massive particle subject to a heterogeneous Poisson noise
characterised by a rate of events, \lambda (t), and a magnitude, \Phi,
following an exponential distribution. We tackle the problem by performing
exact time-averages over the noise in a similar way to previous works analysing
the problem of the Brownian particle. From this procedure we obtain the
long-term equilibrium distributions of position and velocity as well as
analytical asymptotic expressions for the injection and dissipation of energy
terms. Considerations on the emergence of stochastic resonance in this type of
system are also set forth.Comment: 21 pages, 5 figures. To be published in Journal of Statistical
Mechanics: Theory and Experimen
Anomalous Processes with General Waiting Times: Functionals and Multipoint Structure
Many transport processes in nature exhibit anomalous diffusive properties
with non-trivial scaling of the mean square displacement, e.g., diffusion of
cells or of biomolecules inside the cell nucleus, where typically a crossover
between different scaling regimes appears over time. Here, we investigate a
class of anomalous diffusion processes that is able to capture such complex
dynamics by virtue of a general waiting time distribution. We obtain a complete
characterization of such generalized anomalous processes, including their
functionals and multi-point structure, using a representation in terms of a
normal diffusive process plus a stochastic time change. In particular, we
derive analytical closed form expressions for the two-point correlation
functions, which can be readily compared with experimental data.Comment: Accepted in Phys. Rev. Let
Convergence to equilibrium for many particle systems
The goal of this paper is to give a short review of recent results of the
authors concerning classical Hamiltonian many particle systems. We hope that
these results support the new possible formulation of Boltzmann's ergodicity
hypothesis which sounds as follows. For almost all potentials, the minimal
contact with external world, through only one particle of , is sufficient
for ergodicity. But only if this contact has no memory. Also new results for
quantum case are presented
On the distribution of estimators of diffusion constants for Brownian motion
We discuss the distribution of various estimators for extracting the
diffusion constant of single Brownian trajectories obtained by fitting the
squared displacement of the trajectory. The analysis of the problem can be
framed in terms of quadratic functionals of Brownian motion that correspond to
the Euclidean path integral for simple Harmonic oscillators with time dependent
frequencies. Explicit analytical results are given for the distribution of the
diffusion constant estimator in a number of cases and our results are confirmed
by numerical simulations.Comment: 14 pages, 5 figure
Loop-Erasure of Plane Brownian Motion
We use the coupling technique to prove that there exists a loop-erasure of a
plane Brownian motion stopped on exiting a simply connected domain, and the
loop-erased curve is the reversal of a radial SLE curve.Comment: 10 page
A numerical approach to copolymers at selective interfaces
We consider a model of a random copolymer at a selective interface which
undergoes a localization/delocalization transition. In spite of the several
rigorous results available for this model, the theoretical characterization of
the phase transition has remained elusive and there is still no agreement about
several important issues, for example the behavior of the polymer near the
phase transition line. From a rigorous viewpoint non coinciding upper and lower
bounds on the critical line are known.
In this paper we combine numerical computations with rigorous arguments to
get to a better understanding of the phase diagram. Our main results include:
- Various numerical observations that suggest that the critical line lies
strictly in between the two bounds.
- A rigorous statistical test based on concentration inequalities and
super-additivity, for determining whether a given point of the phase diagram is
in the localized phase. This is applied in particular to show that, with a very
low level of error, the lower bound does not coincide with the critical line.
- An analysis of the precise asymptotic behavior of the partition function in
the delocalized phase, with particular attention to the effect of rare atypical
stretches in the disorder sequence and on whether or not in the delocalized
regime the polymer path has a Brownian scaling.
- A new proof of the lower bound on the critical line. This proof relies on a
characterization of the localized regime which is more appealing for
interpreting the numerical data.Comment: accepted for publication on J. Stat. Phy
- …
