In this work we study, under the Stratonovich definition, the problem of the
damped oscillatory massive particle subject to a heterogeneous Poisson noise
characterised by a rate of events, \lambda (t), and a magnitude, \Phi,
following an exponential distribution. We tackle the problem by performing
exact time-averages over the noise in a similar way to previous works analysing
the problem of the Brownian particle. From this procedure we obtain the
long-term equilibrium distributions of position and velocity as well as
analytical asymptotic expressions for the injection and dissipation of energy
terms. Considerations on the emergence of stochastic resonance in this type of
system are also set forth.Comment: 21 pages, 5 figures. To be published in Journal of Statistical
Mechanics: Theory and Experimen