10,625 research outputs found
Signal transmission through the dark-adapted retina of the toad (Bufo marinus). Gain, convergence, and signal/noise.
Responses to light were recorded from rods, horizontal cells, and ganglion cells in dark-adapted toad eyecups. Sensitivity was defined as response amplitude per isomerization per rod for dim flashes covering the excitatory receptive field centers. Both sensitivity and spatial summation were found to increase by one order of magnitude between rods and horizontal cells, and by two orders of magnitude between rods and ganglion cells. Recordings from two hyperpolarizing bipolar cells showed a 20 times response increase between rods and bipolars. At absolute threshold for ganglion cells (Copenhagen, D.R., K. Donner, and T. Reuter. 1987. J. Physiol. 393:667-680) the dim flashes produce 10-50-microV responses in the rods. The cumulative gain exhibited at each subsequent synaptic transfer from the rods to the ganglion cells serves to boost these small amplitude signals to the level required for initiation of action potentials in the ganglion cells. The convergence of rod signals through increasing spatial summation serves to decrease the variation of responses to dim flashes, thereby increasing the signal-to-noise ratio. Thus, at absolute threshold for ganglion cells, the convergence typically increases the maximal signal-to-noise ratio from 0.6 in rods to 4.6 in ganglion cells
kmos: A lattice kinetic Monte Carlo framework
Kinetic Monte Carlo (kMC) simulations have emerged as a key tool for
microkinetic modeling in heterogeneous catalysis and other materials
applications. Systems, where site-specificity of all elementary reactions
allows a mapping onto a lattice of discrete active sites, can be addressed
within the particularly efficient lattice kMC approach. To this end we describe
the versatile kmos software package, which offers a most user-friendly
implementation, execution, and evaluation of lattice kMC models of arbitrary
complexity in one- to three-dimensional lattice systems, involving multiple
active sites in periodic or aperiodic arrangements, as well as site-resolved
pairwise and higher-order lateral interactions. Conceptually, kmos achieves a
maximum runtime performance which is essentially independent of lattice size by
generating code for the efficiency-determining local update of available events
that is optimized for a defined kMC model. For this model definition and the
control of all runtime and evaluation aspects kmos offers a high-level
application programming interface. Usage proceeds interactively, via scripts,
or a graphical user interface, which visualizes the model geometry, the lattice
occupations and rates of selected elementary reactions, while allowing
on-the-fly changes of simulation parameters. We demonstrate the performance and
scaling of kmos with the application to kMC models for surface catalytic
processes, where for given operation conditions (temperature and partial
pressures of all reactants) central simulation outcomes are catalytic activity
and selectivities, surface composition, and mechanistic insight into the
occurrence of individual elementary processes in the reaction network.Comment: 21 pages, 12 figure
Renormalization Group Flow of Quantum Gravity in the Einstein-Hilbert Truncation
The exact renormalization group equation for pure quantum gravity is used to
derive the non-perturbative \Fbeta-functions for the dimensionless Newton
constant and cosmological constant on the theory space spanned by the
Einstein-Hilbert truncation. The resulting coupled differential equations are
evaluated for a sharp cutoff function. The features of these flow equations are
compared to those found when using a smooth cutoff. The system of equations
with sharp cutoff is then solved numerically, deriving the complete
renormalization group flow of the Einstein-Hilbert truncation in . The
resulting renormalization group trajectories are classified and their physical
relevance is discussed. The non-trivial fixed point which, if present in the
exact theory, might render Quantum Einstein Gravity nonperturbatively
renormalizable is investigated for various spacetime dimensionalities.Comment: 58 pages, latex, 24 figure
Running Gauge Coupling in Asymptotically Safe Quantum Gravity
We investigate the non-perturbative renormalization group behavior of the
gauge coupling constant using a truncated form of the functional flow equation
for the effective average action of the Yang-Mills-gravity system. We find a
non-zero quantum gravity correction to the standard Yang-Mills beta function
which has the same sign as the gauge boson contribution. Our results fit into
the picture according to which Quantum Einstein Gravity (QEG) is asymptotically
safe, with a vanishing gauge coupling constant at the non-trivial fixed point.Comment: 27 page
Interplay between nanometer-scale strain variations and externally applied strain in graphene
We present a molecular modeling study analyzing nanometer-scale strain
variations in graphene as a function of externally applied tensile strain. We
consider two different mechanisms that could underlie nanometer-scale strain
variations: static perturbations from lattice imperfections of an underlying
substrate and thermal fluctuations. For both cases we observe a decrease in the
out-of-plane atomic displacements with increasing strain, which is accompanied
by an increase in the in-plane displacements. Reflecting the non-linear elastic
properties of graphene, both trends together yield a non-monotonic variation of
the total displacements with increasing tensile strain. This variation allows
to test the role of nanometer-scale strain variations in limiting the carrier
mobility of high-quality graphene samples
On the Possibility of Quantum Gravity Effects at Astrophysical Scales
The nonperturbative renormalization group flow of Quantum Einstein Gravity
(QEG) is reviewed. It is argued that at large distances there could be strong
renormalization effects, including a scale dependence of Newton's constant,
which mimic the presence of dark matter at galactic and cosmological scales.Comment: LaTeX, 18 pages, 4 figures. Invited contribution to the Int. J. Mod.
Phys. D special issue on dark matter and dark energ
Dynamical System Analysis of Cosmologies with Running Cosmological Constant from Quantum Einstein Gravity
We discuss a mechanism that induces a time-dependent vacuum energy on
cosmological scales. It is based on the instability induced renormalization
triggered by the low energy quantum fluctuations in a Universe with a positive
cosmological constant. We employ the dynamical systems approach to study the
qualitative behavior of Friedmann-Robertson-Walker cosmologies where the
cosmological constant is dynamically evolving according with this
nonperturbative scaling at low energies. It will be shown that it is possible
to realize a "two regimes" dark energy phases, where an unstable early phase of
power-law evolution of the scale factor is followed by an accelerated expansion
era at late times.Comment: 26 pages, 4 figures. To appear in New Journal of Physic
Structural Metastability of Endohedral Silicon Fullerenes
Endohedrally doped Si20 fullerenes appear as appealing building blocks for
nanoscale materials. We investigate their structural stability with an unbiased
and systematic global geometry optimization method within density-functional
theory. For a wide range of metal doping atoms, it was sufficient to explore
the Born Oppenheimer surface for only a moderate number of local minima to find
structures that clearly differ from the initial endohedral cages, but are
considerably more favorable in terms of energy. Previously proposed structures
are thus all metastable.Comment: 4 pages, 1 figur
Nonperturbative renomalization group for Einstein gravity with matter
we investigate the exact renormalization group (RG) in Einstein gravity
coupled to N-component scalar field, working in the effective average action
formalism and background field method. The truncated evolution equation is
obtained for the Newtonian and cosmological constants. We have shown that
screening or antiscreening behaviour of the gravitational coupling depends
cricially on the choice of scalar-gravitational and the number of scalar
fields.Comment: 7 pages, LaTeX, a few typos correcte
- …
