10,625 research outputs found

    Signal transmission through the dark-adapted retina of the toad (Bufo marinus). Gain, convergence, and signal/noise.

    Get PDF
    Responses to light were recorded from rods, horizontal cells, and ganglion cells in dark-adapted toad eyecups. Sensitivity was defined as response amplitude per isomerization per rod for dim flashes covering the excitatory receptive field centers. Both sensitivity and spatial summation were found to increase by one order of magnitude between rods and horizontal cells, and by two orders of magnitude between rods and ganglion cells. Recordings from two hyperpolarizing bipolar cells showed a 20 times response increase between rods and bipolars. At absolute threshold for ganglion cells (Copenhagen, D.R., K. Donner, and T. Reuter. 1987. J. Physiol. 393:667-680) the dim flashes produce 10-50-microV responses in the rods. The cumulative gain exhibited at each subsequent synaptic transfer from the rods to the ganglion cells serves to boost these small amplitude signals to the level required for initiation of action potentials in the ganglion cells. The convergence of rod signals through increasing spatial summation serves to decrease the variation of responses to dim flashes, thereby increasing the signal-to-noise ratio. Thus, at absolute threshold for ganglion cells, the convergence typically increases the maximal signal-to-noise ratio from 0.6 in rods to 4.6 in ganglion cells

    kmos: A lattice kinetic Monte Carlo framework

    Get PDF
    Kinetic Monte Carlo (kMC) simulations have emerged as a key tool for microkinetic modeling in heterogeneous catalysis and other materials applications. Systems, where site-specificity of all elementary reactions allows a mapping onto a lattice of discrete active sites, can be addressed within the particularly efficient lattice kMC approach. To this end we describe the versatile kmos software package, which offers a most user-friendly implementation, execution, and evaluation of lattice kMC models of arbitrary complexity in one- to three-dimensional lattice systems, involving multiple active sites in periodic or aperiodic arrangements, as well as site-resolved pairwise and higher-order lateral interactions. Conceptually, kmos achieves a maximum runtime performance which is essentially independent of lattice size by generating code for the efficiency-determining local update of available events that is optimized for a defined kMC model. For this model definition and the control of all runtime and evaluation aspects kmos offers a high-level application programming interface. Usage proceeds interactively, via scripts, or a graphical user interface, which visualizes the model geometry, the lattice occupations and rates of selected elementary reactions, while allowing on-the-fly changes of simulation parameters. We demonstrate the performance and scaling of kmos with the application to kMC models for surface catalytic processes, where for given operation conditions (temperature and partial pressures of all reactants) central simulation outcomes are catalytic activity and selectivities, surface composition, and mechanistic insight into the occurrence of individual elementary processes in the reaction network.Comment: 21 pages, 12 figure

    Renormalization Group Flow of Quantum Gravity in the Einstein-Hilbert Truncation

    Get PDF
    The exact renormalization group equation for pure quantum gravity is used to derive the non-perturbative \Fbeta-functions for the dimensionless Newton constant and cosmological constant on the theory space spanned by the Einstein-Hilbert truncation. The resulting coupled differential equations are evaluated for a sharp cutoff function. The features of these flow equations are compared to those found when using a smooth cutoff. The system of equations with sharp cutoff is then solved numerically, deriving the complete renormalization group flow of the Einstein-Hilbert truncation in d=4d=4. The resulting renormalization group trajectories are classified and their physical relevance is discussed. The non-trivial fixed point which, if present in the exact theory, might render Quantum Einstein Gravity nonperturbatively renormalizable is investigated for various spacetime dimensionalities.Comment: 58 pages, latex, 24 figure

    Running Gauge Coupling in Asymptotically Safe Quantum Gravity

    Full text link
    We investigate the non-perturbative renormalization group behavior of the gauge coupling constant using a truncated form of the functional flow equation for the effective average action of the Yang-Mills-gravity system. We find a non-zero quantum gravity correction to the standard Yang-Mills beta function which has the same sign as the gauge boson contribution. Our results fit into the picture according to which Quantum Einstein Gravity (QEG) is asymptotically safe, with a vanishing gauge coupling constant at the non-trivial fixed point.Comment: 27 page

    Interplay between nanometer-scale strain variations and externally applied strain in graphene

    Get PDF
    We present a molecular modeling study analyzing nanometer-scale strain variations in graphene as a function of externally applied tensile strain. We consider two different mechanisms that could underlie nanometer-scale strain variations: static perturbations from lattice imperfections of an underlying substrate and thermal fluctuations. For both cases we observe a decrease in the out-of-plane atomic displacements with increasing strain, which is accompanied by an increase in the in-plane displacements. Reflecting the non-linear elastic properties of graphene, both trends together yield a non-monotonic variation of the total displacements with increasing tensile strain. This variation allows to test the role of nanometer-scale strain variations in limiting the carrier mobility of high-quality graphene samples

    On the Possibility of Quantum Gravity Effects at Astrophysical Scales

    Get PDF
    The nonperturbative renormalization group flow of Quantum Einstein Gravity (QEG) is reviewed. It is argued that at large distances there could be strong renormalization effects, including a scale dependence of Newton's constant, which mimic the presence of dark matter at galactic and cosmological scales.Comment: LaTeX, 18 pages, 4 figures. Invited contribution to the Int. J. Mod. Phys. D special issue on dark matter and dark energ

    Dynamical System Analysis of Cosmologies with Running Cosmological Constant from Quantum Einstein Gravity

    Full text link
    We discuss a mechanism that induces a time-dependent vacuum energy on cosmological scales. It is based on the instability induced renormalization triggered by the low energy quantum fluctuations in a Universe with a positive cosmological constant. We employ the dynamical systems approach to study the qualitative behavior of Friedmann-Robertson-Walker cosmologies where the cosmological constant is dynamically evolving according with this nonperturbative scaling at low energies. It will be shown that it is possible to realize a "two regimes" dark energy phases, where an unstable early phase of power-law evolution of the scale factor is followed by an accelerated expansion era at late times.Comment: 26 pages, 4 figures. To appear in New Journal of Physic

    Structural Metastability of Endohedral Silicon Fullerenes

    Get PDF
    Endohedrally doped Si20 fullerenes appear as appealing building blocks for nanoscale materials. We investigate their structural stability with an unbiased and systematic global geometry optimization method within density-functional theory. For a wide range of metal doping atoms, it was sufficient to explore the Born Oppenheimer surface for only a moderate number of local minima to find structures that clearly differ from the initial endohedral cages, but are considerably more favorable in terms of energy. Previously proposed structures are thus all metastable.Comment: 4 pages, 1 figur

    Nonperturbative renomalization group for Einstein gravity with matter

    Full text link
    we investigate the exact renormalization group (RG) in Einstein gravity coupled to N-component scalar field, working in the effective average action formalism and background field method. The truncated evolution equation is obtained for the Newtonian and cosmological constants. We have shown that screening or antiscreening behaviour of the gravitational coupling depends cricially on the choice of scalar-gravitational ξ\xi and the number of scalar fields.Comment: 7 pages, LaTeX, a few typos correcte
    corecore