42 research outputs found
Data-driven stochastic optimization for distributional ambiguity with integrated confidence region
We discuss stochastic optimization problems under distributional ambiguity. The distributional uncertainty is captured by considering an entire family of distributions. Because we assume the existence of data, we can consider confidence regions for the different estimators of the parameters of the distributions. Based on the definition of an appropriate estimator in the interior of the resulting confidence region, we propose a new data-driven stochastic optimization problem. This new approach applies the idea of a-posteriori Bayesian methods to the confidence region. We are able to prove that the expected value, over all observations and all possible distributions, of the optimal objective function of the proposed stochastic optimization problem is bounded by a constant. This constant is small for a sufficiently large i.i.d. sample size and depends on the chosen confidence level and the size of the confidence region. We demonstrate the utility of the new optimization approach on a Newsvendor and a reliability problem
Path trading : fast algorithms, smoothed analysis, and hardness results
The Border Gateway Protocol (BGP) serves as the main routing protocol of the Internet and ensures network reachability among autonomous systems (ASes). When traffic is forwarded between the many ASes on the Internet according to that protocol, each AS selfishly routes the traffic inside its own network according to some internal protocol that supports the local objectives of the AS. We consider possibilities of achieving higher global performance in such systems while maintaining the objectives and costs of the individual ASes. In particular, we consider how path trading, i.e. deviations from routing the traffic using individually optimal protocols, can lead to a better global performance. Shavitt and Singer ("Limitations and Possibilities of Path Trading between Autonomous Systems", INFOCOM 2010) were the first to consider the computational complexity of finding such path trading solutions. They show that the problem is weakly NP-hard and provide a dynamic program to find path trades between pairs of ASes. In this paper we improve upon their results, both theoretically and practically. First, we show that finding path trades between sets of ASes is also strongly NP-hard. Moreover, we provide an algorithm that finds all Pareto-optimal path trades for a pair of two ASes. While in principal the number of Pareto-optimal path trades can be exponential, in our experiments this number was typically small. We use the framework of smoothed analysis to give theoretical evidence that this is a general phenomenon, and not only limited to the instances on which we performed experiments. The computational results show that our algorithm yields far superior running times and can solve considerably larger instances than the previous dynamic program
Optimal investment by large consumers in an electricity market with generator market power
The investment decisions of energy-intensive consumers can alter the balance of supply and demand in an electricity market. In particular, they can increase the market power of incumbent generators such that prices may increase as a consequence of their investments. Whilst it is therefore intuitive that such investors will wish to consider their effects on the market, it is a challenging problem analytically and one that has been under-researched. In general, the problem can be manifest in any supply chain where demand-side investments influence endogenous price formation in the intermediate product markets. Theoretically, we show how the presence of producer market power decreases demand-side investments and then, computationally we formulate a quad-level program to model the operational implications for a demand-side investor in more detail. With an innovative reduction in complexity to a bilevel model, an efficient solution algorithm for the optimal investment by a demand-side investor is facilitated. We demonstrate computability on a small scale electricity system and the results confirm the theory
Optimal Control Formulations for the Unit Commitment Problem
International audienceThe unit commitment (UC) problem is a well-known combinatorial optimization problem arising in operations planning of power systems. It involves deciding both the scheduling of power units, when each unit should be turned on or off, and the economic dispatch problem, how much power each of the on units should produce, in order to meet power demand at minimum cost while satisfying a set of operational and technological constraints. This problem is typically formulated as nonlinear mixed-integer programming problem and has been solved in the literature by a huge variety of optimization methods, ranging from exact methods (such as dynamic programming and branch-and-bound) to heuristic methods (genetic algorithms, simulated annealing, and particle swarm). Here, we discuss how the UC problem can be formulated with an optimal control model, describe previous discrete-time optimal control models, and propose a continuous-time optimal control model. The continuous-time optimal control formulation proposed has the advantage of involving only real-valued decision variables (controls) and enables extra degrees of freedom as well as more accuracy, since it allows to consider sets of demand data that are not sampled hourly