180 research outputs found

    Optimal switching of a nanomagnet assisted by microwaves

    Full text link
    We develop an efficient and general method for optimizing the microwave field that achieves magnetization switching with a smaller static field. This method is based on optimal control and renders an exact solution for the 3D microwave field that triggers the switching of a nanomagnet with a given anisotropy and in an oblique static field. Applying this technique to the particular case of uniaxial anisotropy, we show that the optimal microwave field, that achieves switching with minimal absorbed energy, is modulated both in frequency and in magnitude. Its role is to drive the magnetization from the metastable equilibrium position towards the saddle point and then damping induces the relaxation to the stable equilibrium position. For the pumping to be efficient, the microwave field frequency must match at the early stage of the switching process the proper precession frequency of the magnetization, which depends on the magnitude and direction of the static field. We investigate the effect of the static field (in amplitude and direction) and of damping on the characteristics of the microwave field. We have computed the switching curves in the presence of the optimal microwave field. The results are in qualitative agreement with micro-SQUID experiments on isolated nanoclusters. The strong dependence of the microwave field and that of the switching curve on the damping parameter may be useful in probing damping in various nanoclusters.Comment: 9 pages, 8 figure

    Fish hosts of the freshwater mussel Unio foucauldianus Pallary, 1936

    Get PDF
    The life cycle of Unio foucauldianus Pallary, 1936, a critically endangered freshwater mussel species (Bivalvia: Unionida), includes a parasitic phase using fish as hosts. Therefore, to develop more efficient conservation strategies it is essential to know which are the suitable fish hosts of U. foucauldianus. In this study, two approaches were used to assess the fish hosts of U. foucauldianus: the determination of infestation rates of fishes under natural conditions through monthly sampling (from January to June) in the Laabid River (Oum Rbia basin) and the N'Fis River (Tensift basin), and artificial infestation in laboratory trials using fish species from both rivers. The natural infestation of fish was detected from February to June, with a peak in May. Fully metamorphosed juveniles were only detected in native fish species, i.e. Luciobarbus ksibi (Boulenger, 1905), Carasobarbus fritschii (Gunther, 1874), Luciobarbus zayanensis Doadrio, Casal-lopez & Yahyaoui, 2016, Labeobarbus maroccanus (Gunther, 1874), and Luciobarbus magniatlantis (Pellegrin, 1919). The two non-native fish species used do not function as effective hosts. Given the increasing human pressure on native fish species in the Mediterranean biodiversity hotspot, including the increased number of non-native fish introductions, urgent conservation measures are discussed for this and other freshwater mussel species.The authors would like to express their thanks to the High Commission for Water and Forests (HCEFLCD) for granting permission to use electrofishing in the Moroccan basins. This study was conducted within the scope of the project ‘Biodiversity and conservation of the critically endangered freshwater mussels in Morocco: ecogeographic, genetic and physiological information’, funded by the Mohamed Bin Zayed Species Conservation Fund (ref. 15256799), and the project ‘Breeding the most endangered bivalve on Earth: argaritifera marocana’, funded by the IUCN SOS (Save our Species) fund (ref. 2015B‐015)

    Exact slip-buckling analysis of two-layer composite columns

    Get PDF
    A mathematical model for slip-buckling has been proposed and its analytical solution has been found for the analysis of layered and geometrically perfect composite columns with inter-layer slip between the layers. The analytical study has been carried out to evaluate exact critical forces and to compare them to those in the literature. Particular emphasis has been placed on the influence of interface compliance on decreasing the bifurcation loads. For this purpose, a preliminary parametric study has been performed by which the influence of various material and geometric parameters on buckling forces have been investigated. (C) 2009 Elsevier Ltd. All rights reserved

    Outcomes of low-grade appendiceal mucinous neoplasms with remote acellular mucinous peritoneal deposits

    Get PDF
    Occasionally, low-grade appendiceal mucinous neoplasms (LAMN) present with mucinous peritoneal deposits (MPD) localized to periappendiceal tissue or diffused throughout the peritoneum. This study was aimed at evaluating the relevance of mucin cellularity for predicting outcomes of LAMN with remote MPD. The records of patients with LAMN and remote MPD who underwent initial assessment at a comprehensive cancer center from 1990 to 2015 were reviewed, and diagnostic procedures, treatments, and outcomes were analyzed. Of 48 patients included in the analysis, 19 had cellular MPD (CMPD) and 29 had acellular MPD. Of 33 patients who underwent cytoreductive surgery, 30 had a complete cytoreduction; the 3 patients with an incomplete cytoreduction had CMPD. In the follow-up period (median, 4 years), 6 patients died of the disease, all of whom had CMPD. Of 11 patients who had progression of disease, 10 had CMPD. Cellularity of remote MPD is an important determinant of disease outcome in LAMN. Approaches such as active surveillance may have a role in selected patients with LAMN and AMPD

    In Vitro Antibacterial Activity of Cysteine Protease Inhibitor from Kiwifruit (Actinidia deliciosa)

    Get PDF
    The need for replacing traditional pesticides with alternative agents for the management of agricultural pathogens is rising worldwide. In this study, a cysteine proteinase inhibitor (CPI), 11 kDa in size, was purified from green kiwifruit to homogeneity. We examined the growth inhibition of three plant pathogenic Gram-negative bacterial strains by kiwi CPI and attempted to elucidate the potential mechanism of the growth inhibition. CPI influenced the growth of phytopathogenic bacteria Agrobacterium tumefaciens (76.2 % growth inhibition using 15 mu M CPI), Burkholderia cepacia (75.6 % growth inhibition) and, to a lesser extent, Erwinia carotovora (44.4 % growth inhibition) by inhibiting proteinases that are excreted by these bacteria. Identification and characterization of natural plant defense molecules is the first step toward creation of improved methods for pest control based on naturally occurring molecules

    M19 Modulates Skeletal Muscle Differentiation and Insulin Secretion in Pancreatic ÎČ-Cells through Modulation of Respiratory Chain Activity

    Get PDF
    Mitochondrial dysfunction due to nuclear or mitochondrial DNA alterations contributes to multiple diseases such as metabolic myopathies, neurodegenerative disorders, diabetes and cancer. Nevertheless, to date, only half of the estimated 1,500 mitochondrial proteins has been identified, and the function of most of these proteins remains to be determined. Here, we characterize the function of M19, a novel mitochondrial nucleoid protein, in muscle and pancreatic ÎČ-cells. We have identified a 13-long amino acid sequence located at the N-terminus of M19 that targets the protein to mitochondria. Furthermore, using RNA interference and over-expression strategies, we demonstrate that M19 modulates mitochondrial oxygen consumption and ATP production, and could therefore regulate the respiratory chain activity. In an effort to determine whether M19 could play a role in the regulation of various cell activities, we show that this nucleoid protein, probably through its modulation of mitochondrial ATP production, acts on late muscle differentiation in myogenic C2C12 cells, and plays a permissive role on insulin secretion under basal glucose conditions in INS-1 pancreatic ÎČ-cells. Our results are therefore establishing a functional link between a mitochondrial nucleoid protein and the modulation of respiratory chain activities leading to the regulation of major cellular processes such as myogenesis and insulin secretion

    The association between retinal vascular geometry changes and diabetic retinopathy and their role in prediction of progression: an exploratory study

    Get PDF
    Background: The study describes the relationship of retinal vascular geometry (RVG) to severity of diabetic retinopathy (DR), and its predictive role for subsequent development of proliferative diabetic retinopathy (PDR). Methods. The research project comprises of two stages. Firstly, a comparative study of diabetic patients with different grades of DR. (No DR: Minimal non-proliferative DR: Severe non-proliferative DR: PDR) (10:10: 12: 19). Analysed RVG features including vascular widths and branching angles were compared between patient cohorts. A preliminary statistical model for determination of the retinopathy grade of patients, using these features, is presented. Secondly, in a longitudinal predictive study, RVG features were analysed for diabetic patients with progressive DR over 7 years. RVG at baseline was examined to determine risk for subsequent PDR development. Results: In the comparative study, increased DR severity was associated with gradual vascular dilatation (p = 0.000), and widening of the bifurcating angle (p = 0.000) with increase in smaller-child-vessel branching angle (p = 0.027). Type 2 diabetes and increased diabetes duration were associated with increased vascular width (p = <0.05 In the predictive study, at baseline, reduced small-child vascular width (OR = 0.73 (95 CI 0.58-0.92)), was predictive of future progression to PDR. Conclusions: The study findings suggest that RVG alterations can act as novel markers indicative of progression of DR severity and establishment of PDR. RVG may also have a potential predictive role in determining the risk of future retinopathy progression. © 2014 Habib et al.; licensee BioMed Central Ltd
    • 

    corecore