453 research outputs found

    Measurement of the proton light response of various LAB based scintillators and its implication for supernova neutrino detection via neutrino-proton scattering

    Get PDF
    The proton light output function in electron-equivalent energy of various scintillators based on linear alkylbenzene (LAB) has been measured in the energy range from 1 MeV to 17.15 MeV for the first time. The measurement was performed at the Physikalisch-Technische Bundesanstalt (PTB) using a neutron beam with continuous energy distribution. The proton light output data is extracted from proton recoil spectra originating from neutron-proton scattering in the scintillator. The functional behavior of the proton light output is described succesfully by Birks' law with a Birks constant kB between (0.0094 +/- 0.0002) cm/MeV and (0.0098 +/- 0.0003) cm/MeV for the different LAB solutions. The constant C, parameterizing the quadratic term in the generalized Birks law, is consistent with zero for all investigated scintillators with an upper limit (95% CL) of about 10^{-7} cm^2/MeV^2. The resulting quenching factors are especially important for future planned supernova neutrino detection based on the elastic scattering of neutrinos on protons. The impact of proton quenching on the supernova event yield from neutrino-proton scattering is discussed.Comment: 12 pages, 17 figures, 4 tables, updated version for publication in Eur.Phys.J.

    Automation in Surgery: The Surgeons' Perspective on Human Factors Issues of Image-Guided Navigation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Image-guided navigation (IGN) systems support the surgeon in navigating through the patients' anatomy. Previous research on IGN has focused on technical feasibility and clinical applications. Yet, as the introduction of IGN corresponds to a partial automation of the surgeon's task, well known issues of human-automation interaction might play a crucial role for the success of IGN as well. The present study represents a first attempt to assess the impact of IGN on four key issues of human automation-interaction, i.e., workload, situation awareness, trust, and skill degradation, from the surgeons' perspective. A nation-wide survey among 213 German surgeons from 94 different hospitals was conducted. Results revealed (1) a workload-shift due to IGN rather than a reduction of workload, (2) benefits of IGN with respect to situation awareness, (3) comparatively high levels of perceived reliability, trust and reliance, and (4) skill degradation as a possible risk, albeit only for inexperienced surgeons

    Modular DSLs for flexible analysis: An e-Motions reimplementation of Palladio

    Get PDF
    We address some of the limitations for extending and validating MDE-based implementations of NFP analysis tools by presenting a modular, model-based partial reimplementation of one well-known analysis framework, namely the Palladio Architecture Simulator. We specify the key DSLs from Palladio in the e-Motions system, describing the basic simulation semantics as a set of graph transformation rules. Di erent properties to be analysed are then encoded as separate, parametrised DSLs, independent of the de nition of Palladio. These can then be composed with the base Palladio DSL to generate speci c simulation environments. Models created in the Palladio IDE can be fed directly into this simulation environment for analysis. We demonstrate two main benefits of our approach: 1) The semantics of the simulation and the nonfunctional properties to be analysed are made explicit in the respective DSL speci cations, and 2) because of the compositional de nition, we can add de nitions of new non-functional properties and their analyses.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    High-energy quasi-monoenergetic neutron fields: existing facilities and future needs

    Get PDF
    The argument that well-characterised quasi-monoenergetic neutron (QMN) sources reaching into the energy domain >20 MeV are needed is presented. A brief overview of the existing facilities is given, and a list of key factors that an ideal QMN source for dosimetry and spectrometry should offer is presented. The authors conclude that all of the six QMN facilities currently in existence worldwide operate in sub-optimal conditions for dosimetry. The only currently available QMN facility in Europe capable of operating at energies >40 MeV, TSL in Uppsala, Sweden, is threatened with shutdown in the immediate future. One facility, NFS at GANIL, France, is currently under construction. NFS could deliver QMN beams up to about 30 MeV. It is, however, so far not clear if and when NFS will be able to offer QMN beams or operate with only so-called white neutron beams. It is likely that by 2016, QMN beams with energies >40 MeV will be available only in South Africa and Japan, with none in Europ

    Standoff UV-C imaging of alpha particle emitters

    Get PDF
    Alpha particles are proven to be very useful in many areas of medicine, technology and science. Yet, they represent the biggest risk to soft biological tissues compared to all nuclear decay products when ingested or inhaled, implying thus stringent radiation protection measures in the management and monitoring of samples that emit them. In this paper we present a standoff optical imaging approach that enables sensing of a radiological threat items at facilities where alpha-emitting material is manufactured, handled, used and stored, at safe distances without putting personnel at risk or contaminating equipment. The optical imaging of alpha-emitting samples is based on the radiation induced air luminescence (radioluminescence) in the UV-C (solar-blind) spectral region which enables detection of alpha particles even under bright light conditions. We show that by adding trace amounts of nitric oxide into the nitrogen atmosphere surrounding the sample, alpha sources with specific activities as low as 1.5 Bq/cm(2) can be remotely imaged. This work provides a proof-of-concept implementation of a novel imaging approach that not only enhances capabilities of a state to take actions which effectively mitigate consequences of an radiological emergency for the society, health, environment and economy, but also benefits nuclear industry in decommissioning efforts.Peer reviewe
    • …
    corecore