57 research outputs found

    The paraventricular nucleus and heart failure

    Get PDF
    What is the topic of this review? This review gives an update on the cellular and molecular mechanisms within the autonomic nervous system involved in nonā€pathological and pathological cardiovascular regulation. What advances does it highlight? For cardiovascular homeostasis in nonā€pathological conditions to be maintained, discrete neural networks using specified signalling mechanisms at both cellular and molecular levels are required. In heart failure, the cell signalling protein partners CAPON and PIN decrease the bioavailability of nitric oxide by inhibiting neuronal nitric oxide synthase activity, leading to the removal of tonic neuronal inhibition. Following a myocardial infarction, proā€inflammatory cytokines in the paraventricular nucleus and the subsequent generation of reactive oxygen species, via angiotensin II activation of the angiotensin II type 1 receptor, increase neuronal excitability further, leading to sympathetic excitation. A pathological feature of heart failure is abnormal control of the sympathetic nervous system. The paraventricular nucleus of the hypothalamus (PVN) is one of the most important central sites involved in regulating sympathetic tone and is, in part, responsible for the dysregulation of the sympathetic nervous system evident in heart failure. Generation of sympathetic tone in response to fluctuations in cardiovascular regulation uses discrete anatomical pathways and neurochemical modulators. Direct and indirect projections from the PVN preā€autonomic neurons innervate the sympathetic preganglionic neurons in the spinal cord, which in turn innervate sympathetic ganglia that give rise to the sympathetic nerves. Preā€autonomic neurons of the PVN themselves receive an afferent input arising from the nucleus tractus solitarii, and viscerosensory receptors convey cardiovascular fluctuations to the nucleus tractus solitarii. The PVN contains excitatory and inhibitory neurons, whose balance determines the sympathetic tone. In nonā€pathological conditions, the tonic inhibition of the PVN preā€autonomic neurons is mediated by GABAā€ and NOā€releasing neurons. In heart failure, the preā€autonomic neurons are disinhibited by the actions of the excitatory neurotransmitters glutamate and angiotensin II, leading to increased sympathetic activity. A key feature of the disinhibition is a reduction in the bioavailability of NO as a consequence of disrupted CAPON and PIN signalling mechanisms within the neuron. Another critical feature that contributes to increased neuronal excitation within the PVN is the production of proā€inflammatory cytokines immediately following a myocardial infarction, the activation of the angiotensin II type 1 receptor and the production of reactive oxygen species. By examining the changes associated with the sympathetic nervous system pathway, we will progress our understanding of sympathetic regulation in heart failure, identify gaps in our knowledge and suggest new therapeutic strategies

    Electrophysiological characterisation of atrial volume receptors using exā€vivo models of isolated rat cardiac atria

    Get PDF
    Atrial volume receptors are a family of afferent neurons whose mechanically sensitive endings terminate in the atria, particularly at the cavoā€atrial junctions. These mechanosensors form the afferent limb of an atrial volume receptor reflex which regulates plasma volume. The prevailing functional classification of atrial receptors arose as a result of inā€vivo recordings in the cat and dog and were classified as type A, B or intermediate according to the timing of peak discharge during the cardiac cycle. In contrast, there have been far fewer studies of the common small laboratory mammals such as the rat. Using several exā€vivo rat cavoā€atrial preparations, a total of 30 successful single cavoā€atrial mechanosensory recordings were obtained. These experiments show that the rat possesses type A, B and intermediate atrial mechanoreceptors as described for larger mammals. Recording these cavoā€atrial receptors proved challenging from the main vagus but direct recording from the cardiac vagal branch greatly increased the yield of mechanically sensitive single units. In contrast to type A units, type B atrial mechanoreceptor activity was never observed at room temperature but required elevation of temperature to a more physiological range in order to be detected. The adequate stimulus for these receptors remains unclear however, type A atrial receptors appear insensitive to direct atrial stretch when applied using a programmable positioner. The findings suggest that type A and type B atrial receptors utilise different molecular transduction mechanisms

    Inhibition of Human and Rat Sucrase and Maltase Activities To Assess Antiglycemic Potential: Optimization of the Assay Using Acarbose and Polyphenols

    Get PDF
    We optimized the assays used to measure inhibition of rat and human Ī±-glucosidases (sucrase and maltase activities), intestinal enzymes which catalyze the final steps of carbohydrate digestion. Cell-free extracts from fully differentiated intestinal Caco-2/TC7 monolayers were shown to be a suitable source of sucraseā€“isomaltase, with the same sequence as human small intestine, and were compared to a rat intestinal extract. The kinetic conditions of the assay were optimized, including comparison of enzymatic and chromatographic methods to detect the monosaccharide products. Human sucrase activity was more susceptible than the rat enzyme to inhibition by acarbose (ICā‚…ā‚€ (concentration required for 50% inhibition) = 2.5 Ā± 0.5 and 12.3 Ā± 0.6 Ī¼M, respectively), by a polyphenol-rich green tea extract, and by pure (āˆ’)-epigallocatechin gallate (EGCG) (ICā‚…ā‚€ = 657 Ā± 150 and 950 Ā± 86 Ī¼M respectively). In contrast, the reverse was observed when assessing maltase activity (e.g., EGCG: ICā‚…ā‚€ = 677 Ā± 241 and 14.0 Ā± 2.0 Ī¼M for human and rat maltase, respectively). 5-Caffeoylquinic acid did not significantly inhibit maltase and was only a very weak inhibitor of sucrase. The data show that for sucrase and maltase activities, inhibition patterns of rat and human enzymes are generally qualitatively similar but can be quantitatively different

    The atypical 'hippocampal' glutamate receptor coupled to phospholipase D that controls stretch-sensitivity in primary mechanosensory nerve endings is homomeric purely metabotropic GluK2

    Get PDF
    ACKNOWLEDGEMENTS We would like to thank: Prof. Christophe Mulle, University of Bordeaux, France for the generous donation of the GluK2-Neo mice; Prof. Roberto Pellicciari and Prof. Maura Marinozzi, University of Perugia, Italy for the generous gift of PCCG-13; the Microscopy and Histology core facility at the Institute of Medical Sciences, University of Aberdeen for their support and assistance in some of the imaging in this work. We would also like to thank Prof. Gernot Riedel, University of Aberdeen UK and Prof. David Jane, University of Bristol UK for helpful comments during the work and discussion about drafts of this manuscript.Peer reviewedPublisher PD

    Acute metabolic actions of the major polyphenols in chamomile: an in vitro mechanistic study on their potential to attenuate postprandial hyperglycaemia

    Get PDF
    Transient hyperglycaemia is a risk factor for type 2 diabetes and endothelial dysfunction, especially in subjects with impaired glucose tolerance. Nutritional interventions and strategies for controlling postprandial overshoot of blood sugars are considered key in preventing progress to the disease state. We have identified apigenin-7-O-glucoside, apigenin, and (Z) and (E)-2-hydroxy-4-methoxycinnamic acid glucosides as the active (poly)phenols in Chamomile (Matricaria recutita) able to modulate carbohydrate digestion and absorption in vitro as assessed by inhibition of Ī±-amylase and maltase activities. The latter two compounds previously mistakenly identified as ferulic acid hexosides were purified and characterised and studied for their contribution to the overall bioactivity of chamomile. Molecular docking studies revealed that apigenin and cinnamic acids present totally different poses in the active site of human Ī±-amylase. In differentiated Caco-2/TC7 cell monolayers, apigenin-7-O-glucoside and apigenin strongly inhibited D-[U-14C]-glucose and D-[U-14C]-sucrose transport, and less effectively D-[U-14C]-fructose transport. Inhibition of D-[U-14C]- glucose transport by apigenin was stronger under Na+-depleted conditions, suggesting interaction with the GLUT2 transporter. Competitive binding studies with molecular probes indicate apigenin interacts primarily at the exofacial-binding site of GLUT2. Taken together, the individual components of Chamomile are promising agents for regulating carbohydrate digestion and sugar absorption at the site of the gastrointestinal tract

    Neurochemistry of the paraventricular nucleus of the hypothalamus: Implications for cardiovascular regulation.

    No full text
    The paraventricular nucleus of the hypothalamus (PVN) is an important site for autonomic and endocrine homeostasis. The PVN integrates specific afferent stimuli to produce an appropriate differential sympathetic output. The neural circuitry and some of the neurochemical substrates within this circuitry are discussed. The PVN has at least three neural circuits to alter sympathetic activity and cardiovascular regulation. These pathways innervate the vasculature and organs such as the heart, kidney and adrenal medulla. The basal level of sympathetic tone at any given time is dependent upon excitatory and inhibitory inputs. Under normal circumstances the sympathetic nervous system is tonically inhibited. This inhibition is dependent upon GABA and nitric oxide such that nitric oxide potentiates local GABAergic synaptic inputs onto the neurones in the PVN. Excitatory neurotransmitters such as glutamate and angiotensin II modify the tonic inhibitory activity. The neurotransmitters oxytocin, vasopressin and dopamine have been shown to affect cardiovascular function. These neurotransmitters are found in neurones of the PVN and within the spinal cord. Oxytocin and vasopressin terminal fibres are closely associated with sympathetic preganglionic neurones (SPNs). Sympathetic preganglionic neurones have been shown to express receptors for oxytocin, vasopressin and dopamine. Oxytocin causes cardioacceleratory and pressor effects that are greatest in the upper thoracic cord while vasopressin cause these effects but more significant in the lower thoracic cord. Dopaminergic effects on the cardiovascular system include inhibitory or excitatory actions attributed to a direct PVN influence or via interneuronal connections to sympathetic preganglionic neurones
    • ā€¦
    corecore