36 research outputs found

    HIV Reservoirs and Immune Surveillance Evasion Cause the Failure of Structured Treatment Interruptions: A Computational Study

    Get PDF
    Continuous antiretroviral therapy is currently the most effective way to treat HIV infection. Unstructured interruptions are quite common due to side effects and toxicity, among others, and cannot be prevented. Several attempts to structure these interruptions failed due to an increased morbidity compared to continuous treatment. The cause of this failure is poorly understood and often attributed to drug resistance. Here we show that structured treatment interruptions would fail regardless of the emergence of drug resistance. Our computational model of the HIV infection dynamics in lymphoid tissue inside lymph nodes, demonstrates that HIV reservoirs and evasion from immune surveillance themselves are sufficient to cause the failure of structured interruptions. We validate our model with data from a clinical trial and show that it is possible to optimize the schedule of interruptions to perform as well as the continuous treatment in the absence of drug resistance. Our methodology enables studying the problem of treatment optimization without having impact on human beings. We anticipate that it is feasible to steer new clinical trials using computational models

    Human Herpesvirus-8 Infection Leads to Expansion of the Preimmune/Natural Effector B Cell Compartment

    Get PDF
    BACKGROUND: Human herpesvirus-8 (HHV-8) is the etiological agent of Kaposi's sarcoma (KS) and of some lymphoproliferative disorders of B cells. Most malignancies develop after long-lasting viral dormancy, and a preventing role for both humoral and cellular immune control is suggested by the high frequency of these pathologies in immunosuppressed patients. B cells, macrophages and dendritic cells of peripheral lymphoid organs and blood represent the major reservoir of HHV-8. Due to the dual role of B cells in HHV-8 infection, both as virus reservoir and as agents of humoral immune control, we analyzed the subset distribution and the functional state of peripheral blood B cells in HHV-8-infected individuals with and without cKS. METHODOLOGY/PRINCIPAL FINDINGS: Circulating B cells and their subsets were analyzed by 6-color flow cytometry in the following groups: 1- patients HHV-8 positive with classic KS (cKS) (n = 47); 2- subjects HHV-8 positive and cKS negative (HSP) (n = 10); 3- healthy controls, HHV-8 negative and cKS negative (HC) (n = 43). The number of B cells belonging to the preimmune/natural effector compartment, including transitional, pre-naïve, naïve and MZ-like subsets, was significantly higher among HHV-8 positive subjects, with or without cKS, while was comparable to healthy controls in the antigen-experienced T-cell dependent compartment. The increased number of preimmune/natural effector B cells was associated with increased resistance to spontaneous apoptosis, while it did not correlate with HHV-8 viral load. CONCLUSIONS/SIGNIFICANCE: Our results indicate that long-lasting HHV-8 infection promotes an imbalance in peripheral B cell subsets, perturbing the equilibrium between earlier and later steps of maturation and activation processes. This observation may broaden our understanding of the complex interplay between viral and immune factors leading HHV-8-infected individuals to develop HHV-8-associated malignancies

    Therapeutic DNA vaccination of vertically HIV-infected children: Report of the first pediatric randomised trial (PEDVAC)

    Get PDF
    Subjects: Twenty vertically HIV-infected children, 6–16 years of age, with stable viral load control and CD4+ values above 400 cells/mm³. Intervention: Ten subjects continued their ongoing antiretroviral treatment (ART, Group A) and 10 were immunized with a HIV-DNA vaccine in addition to their previous therapy (ART and vaccine, Group B). The genetic vaccine represented HIV-1 subtypes A, B and C, encoded Env, Rev, Gag and RT and had no additional adjuvant. Immunizations took place at weeks 0, 4 and 12, with a boosting dose at week 36. Monitoring was performed until week 60 and extended to week 96. Results: Safety data showed good tolerance of the vaccine. Adherence to ART remained high and persistent during the study and did not differ significantly between controls and vaccinees. Neither group experienced either virological failure or a decline of CD4+ counts from baseline. Higher HIV-specific cellular immune responses were noted transiently to Gag but not to other components of the vaccine. Lymphoproliferative responses to a virion antigen HIV-1 MN were higher in the vaccinees than in the controls (p = 0.047), whereas differences in reactivity to clade-specific Gag p24, RT or Env did not reach significance. Compared to baseline, the percentage of HIV-specific CD8+ lymphocytes releasing perforin in the Group B was higher after the vaccination schedule had been completed (p = 0.031). No increased CD8+ perforin levels were observed in control Group A. Conclusions: The present study demonstrates the feasibility, safety and moderate immunogenicity of genetic vaccination in vertically HIV-infected children, paving the way for amplified immunotherapeutic approaches in the pediatric population. Trial registration: clinicaltrialsregister.eu 2007-002359-18; 2007-002359-18/I

    HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial

    Get PDF

    Immune reconstitution in paediatric patients with acquired immunodeficiency

    No full text
    corecore