1,120 research outputs found

    Biolistic transformation of Saccharomyces cerevisiae with β-glucosidase gene from Cellulomonas biazotea

    Get PDF
    A β-glucosidase genomic DNA from Cellulomonas biazotea NIAB 442 was isolated and coated onto tungsten microprojectiles for direct transformation of the gene into Saccharomyces cerevisiae. Transformation of β-glucosidase into S. cerevisae conferred the ability to hydrolyse esculin and cellobiose, indicated that the gene is expressed in the bombarded yeast. Key Words: Biolistic transformation, β-glucosidase, Cellulomonas biazotea, Saccharomyces cerevisiae. African Journal of Biotechnology Vol.3(1) 2004: 112-11

    Exfoliation of graphene via wet chemical routes

    No full text

    (R)-Doxylaminium (R,R)-tartrate

    Get PDF
    In the title compound (systematic name: (R)-dimeth­yl{2-[1-phenyl-1-(pyridin-2-yl)eth­oxy]eth­yl}aza­nium (R,R)-3-carb­oxy-2,3-dihy­droxy­propano­ate), C17H23N2O+·C4H5O6 −, the doxylaminium cation is protonated at the N atom. The tartrate monoanions are linked by short, almost linear O—H⋯O hydrogen bonds into chains extended along [100]. These chains are inter­linked by anion–pyridine O—H⋯N hydrogen bonds into a two-dimensional grid structure. WeakC—H⋯O inter­actions also play a role in the crystal packing. An intra­molecular hy­droxy–carboxyl­ate O—H⋯O hydrogen bond influences the conformation of the anion: the hydrogen-bonded fragment is almost planar, the maximum deviation from the mean plane being 0.059 (14) Å. In the cation, the aromatic rings are almost perpendicular [dihedral angle = 84.94 (8)°] and the conformation of the O—C—C—N chain is gauche(−), the dihedral angle is −76.6 (2)°. The absolute configuration was assigned on the basis of known chirality of the parent compound

    Authorship Identification of Source Code Segments Written by Multiple Authors Using Stacking Ensemble Method

    Full text link
    Source code segment authorship identification is the task of identifying the author of a source code segment through supervised learning. It has vast importance in plagiarism detection, digital forensics, and several other law enforcement issues. However, when a source code segment is written by multiple authors, typical author identification methods no longer work. Here, an author identification technique, capable of predicting the authorship of source code segments, even in the case of multiple authors, has been proposed which uses a stacking ensemble classifier. This proposed technique is built upon several deep neural networks, random forests and support vector machine classifiers. It has been shown that for identifying the author group, a single classification technique is no longer sufficient and using a deep neural network-based stacking ensemble method can enhance the accuracy significantly. The performance of the proposed technique has been compared with some existing methods which only deal with the source code segments written precisely by a single author. Despite the harder task of authorship identification for source code segments written by multiple authors, our proposed technique has achieved promising results evidenced by the identification accuracy, compared to the related works which only deal with code segments written by a single author.Comment: 2019 22nd International Conference on Computer and Information Technology (ICCIT

    Configuration Detection of Grounding Grid: Static Electric Field Based Nondestructive Technique

    Full text link
    Grounding grid configuration which, is key to its fault diagnosis, changes continuously with the extension in a substation. Furthermore, older substations grounding grid configurations are unknown. Existing literature regarding configuration detection mainly accounts for the magnetic field that required a gradient to locate the grounding conductor. The gradient of raw measurement in the substation vicinity enhances electromagnetic noise and distorts the results. Therefore, in this paper, we have developed a new algorithm, Configuration Detection of Grounding Grid (CDGG) based on the static electric field and the concept of ordered pairs to draw the configuration of the unknown grounding grid. Unlike, the practiced magnetic field, the electric field does not require a gradient. The maximum electric field value indicates the location of a grounding conductor. The connection between nodes is verified by measuring the electric field on the circle. Furthermore, the proposed algorithm also locates any diagonal conductor in the configuration. Mathematical reasoning and simulation results illustrate that our proposed algorithm is feasible to draw the configuration of the unknown grounding grid

    Optimizing seed rate for summer mungbean varieties

    Get PDF
    An experiment was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh from March to June, 2007 to investigate the effect of cultivar and seed rate on morphological characters, yield attributes and yield of summer mungbean. The experiment comprised four varieties viz., BINA moog2, BINA moog5, BINA moog6 and BINA moog7 and four seed rates viz. 30, 40, 50 and 60 kg ha-1. The experiment was laid out in a randomized complete block design with four replications. Results revealed that variety and seed rate had significant effect on the studied crop characters and yield. The variety BINA moog7 showed superiority in relation to plant height, number of branches and effective pods per plant, number of seeds pod-1 compared to other varieties, which resulted in the highest seed yield both per plant and per hectare. The plant height, stover yield and number of non-effective pods per plant increased with the increase in seed rate, while branch number, number of effective pods per plant, seeds per pod, 100-seed weight, as well as seed weight per plant decreased with increasing seed rate. The higher number of branches and effective pods per plant, number of seeds pod, 100-seed weight and seed yield per plant were recorded at the rate of 30 and 40 kg seeds ha-1 and the lowest values for the above parameters were observed at the rate of 60 kg seeds ha-1. But per unit area basis, the highest seed yield was recorded in 40 kg seeds ha-1 followed by 50 kg seeds ha-1 due to accommodation of higher number of plants. BINA moog7 interacted favorably with the seed rate of 30 kg ha-1 to produce the highest seed yield

    CBRS Spectrum Sharing between LTE-U and WiFi: A Multiarmed Bandit Approach

    Get PDF
    The surge of mobile devices such as smartphone and tablets requires additional capacity. To achieve ubiquitous and high data rate Internet connectivity, effective spectrum sharing and utilization of the wireless spectrum carry critical importance. In this paper, we consider the use of unlicensed LTE (LTE-U) technology in the 3.5 GHz Citizens Broadband Radio Service (CBRS) band and develop a multiarmed bandit (MAB) based spectrum sharing technique for a smooth coexistence with WiFi. In particular, we consider LTE-U to operate as a General Authorized Access (GAA) user; hereby MAB is used to adaptively optimize the transmission duty cycle of LTE-U transmissions. Additionally, we incorporate downlink power control which yields a high energy efficiency and interference suppression. Simulation results demonstrate a significant improvement in the aggregate capacity (approximately 33%) and cell-edge throughput of coexisting LTE-U and WiFi networks for different base station densities and user densities
    corecore