15 research outputs found

    ATM protein and p53-serine 15 phosphorylation in ataxia-telangiectasia (AT) patients and at heterozygotes

    Get PDF
    ATM (ataxia-telangiectasia mutated) gene plays a central role in the DNA-damage response pathway. We characterized the ATM protein expression in immortalized cells from AT and AT-variant patients, and heterozygotes and correlated it with two ATM-dependent radiation responses, G1 checkpoint arrest and p53-Ser 15 phosphorylation. On Western blots, the full-length ATM protein was detected in eight of 18 AT cases, albeit at 1–32% of the normal levels, whereas a truncated ATM protein was detected in a single case, despite the prevalence among cases of truncation mutations. Of two ataxia without telangiectasia [A-(T)] cases, one expressed 20% and the other ~70% of the normal ATM levels. Noteworthy, among ten asymptomatic heterozygous carriers for AT, normal amounts of ATM protein were found in one and reduced by 40–50% in the remaining cases. The radiation-induced phosphorylation of p53 protein at serine 15, largely mediated by ATM kinase, was defective in AT, A(-T) and in 2/4 heterozygous carriers, while the G1 cell cycle checkpoint was disrupted in all AT and A(-T) cases, and in 3/10 AT heterozygotes. Altogether, our study shows that AT and A(-T) cases bearing truncation mutations of the ATM gene can produce modest amounts of full-length (and only rarely truncated) ATM protein. However, this limited expression of ATM protein provides no benefit regarding the ATM-dependent responses related to G1 arrest and p53-ser15 phosphorylation. Our study additionally shows that the majority of AT heterozygotes express almost halved levels of ATM protein, sufficient in most cases to normally regulate the ATM-dependent DNA damage-response pathway. © 2000 Cancer Research Campaig

    Genetic Dissection of Epidermal Growth Factor Receptor Signaling during Luteinizing Hormone-Induced Oocyte Maturation

    Get PDF
    Recent evidence that luteinizing hormone (LH) stimulation of ovulatory follicles causes transactivation of the epidermal growth factor receptor (EGFR) has provided insights into the mechanisms of ovulation. However, the complete array of signals that promote oocyte reentry into the meiotic cell cycle in the follicle are still incompletely understood. To elucidate the signaling downstream of EGFR involved in oocyte maturation, we have investigated the LH responses in granulosa cells with targeted ablation of EGFR. Oocyte maturation and ovulation is disrupted when EGFR expression is progressively reduced. In granulosa cells from mice with either global or granulosa cell-specific disruption of EGFR signaling, LH-induced phosphorylation of MAPK3/1, p38MAPK, and connexin-43 is impaired. Although the LH-induced decrease in cGMP is EGFR-dependent in wild type follicles, LH still induces a decrease in cGMP in Egfrdelta/f Cyp19-Cre follicles. Thus compensatory mechanisms appear activated in the mutant. Spatial propagation of the LH signal in the follicle also is dependent on the EGF network, and likely is important for the control of signaling to the oocyte. Thus, multiple signals and redundant pathways contribute to regulating oocyte reentry into the cell cycle

    LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse

    Get PDF
    Premature ovarian failure and female infertility are frequent side effects of anticancer therapies, owing to the extreme sensitivity of the ovarian reserve oocytes to the damaging effects of irradiation and chemotherapy on DNA. We report here a robust protective effect of luteinizing hormone (LH) on the primordial follicle pool of prepubertal ovaries against the cisplatin (Cs)-induced apoptosis. In vitro LH treatment of prepubertal ovarian fragments generated anti-apoptotic signals by a subset of ovarian somatic cells expressing LH receptor (LHR) through cAMP/PKA and Akt pathways. Such signals, reducing the oocyte level of pro-apoptotic TAp63 protein and favoring the repair of the Cs-damaged DNA in the oocytes, prevented their apoptosis. Noteworthy, in vivo administration to prepubertal female mice of a single dose of LH together with Cs inhibited the depletion of the primordial follicle reserve caused by the drug and preserved their fertility in reproductive age, preventing significant alteration in the number of pregnancy and of delivered pups. In conclusion, these findings establish a novel ovoprotective role for LH and further support the very attracting prospective to use physiological 'fertoprotective' approaches for preventing premature infertility and risks linked to precocious menopause in young patients who survived cancer after chemotherapy

    The Nuclear Receptor Cofactor Receptor-Interacting Protein 140 Is a Positive Regulator of Amphiregulin Expression and Cumulus Cell-Oocyte Complex Expansion in the Mouse Ovary

    No full text
    The nuclear receptor cofactor receptor-interacting protein 140 (RIP140) is essential for cumulus cell-oocyte complex (COC) expansion, follicular rupture, and oocyte release during ovulation. The expression of many genes necessary for COC expansion is impaired in the absence of RIP140, but the studies herein document that their expression can be restored and COC expansion rescued by treatment with the epidermal growth factor (EGF)-like factor amphiregulin (AREG) both in vitro and in vivo. We demonstrate by several approaches that RIP140 is required for the expression of the EGF-like factors in granulosa cells, but the dependence of genes involved in cumulus expansion, including Ptgs2 Has2, Tnfaip6, and Ptx3, is indirect because they are induced by AREG. Treatment of granulosa cells with forskolin to mimic the effects of LH increases AREG promoter activity in a RIP140-dependent manner that 1) requires an intact cAMP response element in the proximal promoter region of the Areg gene and 2) involves its actions as a coactivator for cAMP response element-binding protein/c-Jun transcription factors. Although human chorionic gonadotropin and AREG coadministration is sufficient to restore ovulation fully in RIP140 heterozygous mice in vivo, both follicular rupture and ovulation remain impaired in the RIP140 null mice. Thus, we conclude that although the level of RIP140 expression in the ovary is a crucial factor required for the transient expression of EGF-like factors necessary for cumulus expansion, it also plays a role in other signaling pathways that induce follicular rupture
    corecore