528 research outputs found

    A Role for Nitric Oxide-Driven Retrograde Signaling in the Consolidation of a Fear Memory

    Get PDF
    In both invertebrate and vertebrate models of synaptic plasticity, signaling via the putative “retrograde messenger” nitric oxide (NO) has been hypothesized to serve as a critical link between functional and structural alterations at pre- and postsynaptic sites. However, while in vitro models of synaptic plasticity have consistently implicated NO signaling in linking postsynaptic induction mechanisms with accompanying presynaptic changes, a convincing role of such “retrograde signaling” in mammalian memory formation has remained elusive. Using auditory Pavlovian fear conditioning, we show that synaptic plasticity and NO signaling in the lateral nucleus of the amygdala (LA) regulate the expression of the ERK-driven immediate early gene early growth response gene I (EGR-1) in regions of the auditory thalamus that are presynaptic to the LA. Further, antisense knockdown of EGR-1 in the auditory thalamus impairs both fear memory consolidation and the training-induced elevation of two presynaptically localized proteins in the LA. These findings indicate that synaptic plasticity and NO signaling in the LA during auditory fear conditioning promote alterations in ERK-driven gene expression in auditory thalamic neurons that are required for both fear memory consolidation as well as presynaptic correlates of fear memory formation in the LA, and provide general support for a role of NO as a “retrograde signal” in mammalian memory formation

    Corticospinal beta-band synchronization entails rhythmic gain modulation

    Get PDF
    Rhythmic synchronization of neurons in the beta or gamma band occurs almost ubiquitously, and this synchronization has been linked to numerous nervous system functions. Many respective studies make the implicit assumption that neuronal synchronization affects neuronal interactions. Indeed, when neurons synchronize, their output spikes reach postsynaptic neurons together, trigger coincidence detection mechanisms, and therefore have an enhanced impact. There is ample experimental evidence demonstrating this consequence of neuronal synchronization, but beyond this, beta/gamma-band synchronization within a group of neurons might also modulate the impact of synaptic input to that synchronized group. This would constitute a separate mechanism through which synchronization affects neuronal interactions, but direct in vivo evidence for this putative mechanism is lacking. Here, we demonstrate that synchronized beta-band activity of a neuronal group modulates the efficacy of synaptic input to that group in-phase with the beta rhythm. This response modulation was not an addition of rhythmic activity onto the average response but a rhythmic modulation of multiplicative input gain. Our results demonstrate that beta-rhythmic activity of a neuronal target group multiplexes input gain along the rhythm cycle. The actual gain of an input then depends on the precision and the phase of its rhythmic synchronization to this target, providing one mechanistic explanation for why synchronization modulates interactions

    Understanding communicative actions:A repetitive TMS study

    Get PDF
    Previous work has shown that the right posterior superior temporal sulcus (RpSTS) is involved in inferring both instrumental goals and communicative intentions of observed actions (1, 2), using previous knowledge to generate perceptual and/or conceptual inferences (3, 4). Here, we disturb neural activity in RpSTS to test whether this region is necessary for understanding the meaning of novel communicative actions. Thirteen subjects received two 20 min sessions of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS), either over RpSTS (50,-42,14) or over a control region (area MT+, -43,-70,10), before performance of a communicative game and a control task. The game involved controlled non-verbal communicative interactions between pairs of subjects (40 trials). Each pair was asked to jointly create a goal configuration of two geometrical tokens, using the movements of the tokens on a gameboard as the only available communicative channel (5). One participant (a confederate) knew the goal configuration, and she moved her token on the gameboard to inform an addressee (a participant) where and how to position his token. The control task was a visual search paradigm that involved the same stimuli, responses, joint attention, and inter-subjects dependencies, but no communicative necessities. Performance was indexed by Task Efficiency, defined as the number of correct responses per unit of planning time, and by Efficiency Rate, defined as the rate of change (across trials) in Task Efficiency. After rTMS over RpSTS, but not left MT+, the Efficiency Rate of the addresses was reduced in the communicative game, but not in the visual search. In contrast, after rTMS over left MT+, subjects were not able to benefit from experience gained during the previous trials of the visual search task (Task X Site interaction, p<0.05). There were no corresponding interactions between tasks and site of rTMS intervention on the Task Efficiency parameter. These findings qualify how RpSTS contributes to understanding the meaning of non-verbal communicative actions. Repetitive TMS over RpSTS did not disrupt the ability of addressees to interpret novel communicative actions. Rather, this region appears to be necessary for incorporating previous knowledge, accumulated during interactions with a communicative partner, to constrain the inferential process that leads to action understanding

    Model-Based Evaluation of Methods for Respiratory Sinus Arrhythmia Estimation

    Get PDF
    OBJECTIVE: Respiratory sinus arrhythmia (RSA) refers to heart rate oscillations synchronous with respiration, and it is one of the major representations of cardiorespiratory coupling. Its strength has been suggested as a biomarker to monitor different conditions and diseases. Some approaches have been proposed to quantify the RSA, but it is unclear which one performs best in specific scenarios. The main objective of this study is to compare seven state-of-the-art methods for RSA quantification using data generated with a model proposed to simulate and control the RSA. These methods are also compared and evaluated on a real-life application, for their ability to capture changes in cardiorespiratory coupling during sleep. METHODS: A simulation model is used to create a dataset of heart rate variability and respiratory signals with controlled RSA, which is used to compare the RSA estimation approaches. To compare the methods objectively in a real-life application, regression models trained on the simulated data are used to map the estimates to the same measurement scale. RESULTS AND CONCLUSION: RSA estimates based on cross entropy, time-frequency coherence and subspace projections showed the best performance on simulated data. In addition, these estimates captured the expected trends in the changes in cardiorespiratory coupling during sleep similarly. SIGNIFICANCE: An objective comparison of methods for RSA quantification is presented to guide future analyses. Also, the proposed simulation model can be used to compare existing and newly proposed RSA estimates. It is freely accessible online

    FlexEvent:going beyond Case-Centric Exploration and Analysis of Multivariate Event Sequences

    Get PDF
    In many domains, multivariate event sequence data is collected focused around an entity (the case). Typically, each event has multiple attributes, for example, in healthcare a patient has events such as hospitalization, medication, and surgery. In addition to the multivariate events, also the case (a specific attribute, e.g., patient) has associated multivariate data (e.g., age, gender, weight). Current work typically only visualizes one attribute per event (label) in the event sequences. As a consequence, events can only be explored from a predefined case-centric perspective. However, to find complex relations from multiple perspectives (e.g., from different case definitions, such as doctor), users also need an event- and attribute-centric perspective. In addition, support is needed to effortlessly switch between and within perspectives. To support such a rich exploration, we present FlexEvent: an exploration and analysis method that enables investigation beyond a fixed case-centric perspective. Based on an adaptation of existing visualization techniques, such as scatterplots and juxtaposed small multiples, we enable flexible switching between different perspectives to explore the multivariate event sequence data needed to answer multi-perspective hypotheses. We evaluated FlexEvent with three domain experts in two use cases with sleep disorder and neonatal ICU data that show our method facilitates experts in exploring and analyzing real-world multivariate sequence data from different perspectives

    Model-Based Evaluation of Methods for Respiratory Sinus Arrhythmia Estimation

    Get PDF
    Objective: Respiratory sinus arrhythmia (RSA) refers to heart rate oscillations synchronous with respiration, and it is one of the major representations of cardiorespiratory coupling. Its strength has been suggested as a biomarker to monitor different conditions and diseases. Some approaches have been proposed to quantify the RSA, but it is unclear which one performs best in specific scenarios. The main objective of this study is to compare seven state-of-the-art methods for RSA quantification using data generated with a model proposed to simulate and control the RSA. These methods are also compared and evaluated on a real-life application, for their ability to capture changes in cardiorespiratory coupling during sleep. Methods: A simulation model is used to create a dataset of heart rate variability and respiratory signals with controlled RSA, which is used to compare the RSA estimation approaches. To compare the methods objectively in a real-life application, regression models trained on the simulated data are used to map the estimates to the same measurement scale. Results and conclusion: RSA estimates based on cross entropy, time-frequency coherence and subspace projections showed the best performance on simulated data. In addition, these estimates captured the expected trends in the changes in cardiorespiratory coupling during sleep similarly. Significance: An objective comparison of methods for RSA quantification is presented to guide future analyses. Also, the proposed simulation model can be used to compare existing and newly proposed RSA estimates. It is freely accessible online

    Migraine and sleep disorders: a systematic review

    Get PDF
    Migraine and sleep disorders are common and often burdensome chronic conditions with a high prevalence in the general population, and with considerable socio-economic impact and costs. The existence of a relationship between migraine and sleep disorders has been recognized from centuries by clinicians and epidemiological studies. Nevertheless, the exact nature of this association, the underlying mechanisms and interactions are complex and not completely understood. Recent biochemical and functional imaging studies identified central nervous system structures and neurotransmitters involved in the pathophysiology of migraine and also important for the regulation of normal sleep architecture, suggesting a possible causative role, in the pathogenesis of both disorders, of a dysregulation in these common nervous system pathways. This systematic review summarizes the existing data on migraine and sleep disorders with the aim to evaluate the existence of a causal relationship and to assess the presence of influencing factors. The identification of specific sleep disorders associated with migraine should induce clinicians to systematically assess their presence in migraine patients and to adopt combined treatment strategies

    Wind assessment for micro wind turbines in an urban environment

    Full text link
    Wind flow in urban environments could be seen as a potential source of energy. This form of energy could be exploited by means of micro wind turbines placed along the existing infrastructures. To test this, an outdoor campaign was organised, which recorded the wind characteristics at different locations around a highway noise barrier in Delft, the Netherlands. The real-time data set was validated with a two-dimensional Computational Fluid Dynamics study. Both the influence of the high turbulence and the inflow angle on the positioning of the micro wind turbines are assessed for the case of perpendicular flow towards the plane of the noise barrier. Results indicated that integrating micro wind turbines with the noise barriers proves advantageous due to the flow velocity increment downstream. Lastly, a noise assessment was conducted in order to determine the optimal spacing between micro wind turbines, which impacts its social acceptance
    corecore