5,900 research outputs found

    Subaru weak-lensing study of A2163: bimodal mass structure

    Full text link
    We present a weak-lensing analysis of the merging cluster A2163 using Subaru/Suprime-Cam and CFHT/Mega-Cam data and discuss the dynamics of this cluster merger, based on complementary weak-lensing, X-ray, and optical spectroscopic datasets. From two dimensional multi-component weak-lensing analysis, we reveal that the cluster mass distribution is well described by three main components, including a two component main cluster A2163-A with mass ratio 1:8, and its cluster satellite A2163-B. The bimodal mass distribution in A2163-A is similar to the galaxy density distribution, but appears as spatially segregated from the brightest X-ray emitting gas region. We discuss the possible origins of this gas-dark matter offset and suggest the gas core of the A2163-A subcluster has been stripped away by ram pressure from its dark matter component. The survival of this gas core to the tidal forces exerted by the main cluster let us infer a subcluster accretion with a non-zero impact parameter. Dominated by the most massive component of A2163-A, the mass distribution of A2163 is well described by a universal Navarro-Frenk-White profile as shown by a one-dimensional tangential shear analysis, while the singular-isothermal sphere profile is strongly ruled out. Comparing this cluster mass profile with profiles derived assuming intracluster medium hydrostatic equilibrium (H.E.) in two opposite regions of the cluster atmosphere has allowed us to confirm the prediction of a departure from H.E. in the eastern cluster side, presumably due to shock heating. Yielding a cluster mass estimate of M_{500}=11.18_{-1.46}^{+1.64}\times10^{14}h^{-1}Msun, our mass profile confirm the exceptionally high mass of A2163, consistent with previous analyses relying on the cluster dynamical analysis and Yx mass proxy.Comment: 17 pages, 11 figures, ApJ, in press. Full resolution version is available at http://www.asiaa.sinica.edu.tw/~okabe/files/a2163_WL_astroph.pd

    Multispin Coding Technique for Nonequilibrium Reweighting

    Full text link
    We present the multispin coding for the nonequlibrium reweighting method of the Monte Carlo simulation, that was developed by the present authors. As an illustration, we treat the driven diffusive lattice gas model. We use the multispin coding technique both for the spin update and for the calculation of the histogram of incremental weights, which is needed in the calculation of nonequlibrium reweighting. All the operations are executed by the bitwise logical commands.Comment: accepted for publication in Int. J. Mod. Phys.

    Important role of the spin-orbit interaction in forming the 1/2^+ orbital structure in Be isotopes

    Get PDF
    The structure of the second 0^+ state of ^{10}Be is investigated using a microscopic α+α+n+n\alpha+\alpha+n+n model based on the molecular-orbit (MO) model. The second 0^+ state, which has dominantly the (1/2^+)^2 configuration, is shown to have a particularly enlarged αα\alpha-\alpha structure. The kinetic energy of the two valence neutrons occupying along the αα\alpha-\alpha axis is reduced remarkably due to the strong α\alpha clustering and, simultaneously, the spin-orbit interaction unexpectedly plays important role to make the energy of this state much lower. The mixing of states with different spin structure is shown to be important in negative-parity states. The experimentally observed small-level spacing between 1^- and 2^- (~ 300 keV) is found to be an evidence of this spin-mixing effect. ^{12}{Be} is also investigated using α+α+4n\alpha+\alpha+4n model, in which four valence neutrons are considered to occupy the (3/2^-)^2(1/2^+)^2 configuration. The energy surface of ^{12}Be is shown to exhibit similar characteristics, that the remarkable α\alpha clustering and the contribution of the spin-orbit interaction make the binding of the state with (3/2^-)^2(1/2^+)^2 configuration properly stronger in comparison with the closed p-shell (3/2^-)^2(1/2^-)^2 configuration.Comment: 14 pages, 4 figure

    Three-dimensional antiferromagnetic q-state Potts models: application of the Wang-Landau algorithm

    Full text link
    We apply a newly proposed Monte Carlo method, the Wang-Landau algorithm, to the study of the three-dimensional antiferromagnetic q-state Potts models on a simple cubic lattice. We systematically study the phase transition of the models with q=3, 4, 5 and 6. We obtain the finite-temperature phase transition for q= 3 and 4, whereas the transition temperature is down to zero for q=5. For q=6 there exists no order for all the temperatures. We also study the ground-state properties. The size-dependence of the ground-state entropy is investigated. We find that the ground-state entropy is larger than the contribution from the typical configurations of the broken-sublattice-symmetry state for q=3. The same situations are found for q = 4, 5 and 6.Comment: 9 pages including 9 eps figures, RevTeX, to appear in J. Phys.

    Influence of long-period variation on shoreline change

    Get PDF
    Cross-shore profile survey on beaches has been conducted weekly from 1999 at the Omotehama Coast, Japan, and data of shoreline position was stored during 14 years. The shoreline position was influenced by many kinds of impacts, such as daily waves, typhoon in several days, seasonal changes of sea condition. Additionally, long-period variation was laid in the measurement of shoreline change. The long-period variation might characterize the trend of shoreline change. However, characteristics of the long-period variation have not been made clear because the measurement with a sufficient period is necessary to investigate them. The estimation of a coastal trend whether it will be erosive or accretive in a long term is important to discuss coastal management. In this research, time-frequency analysis of the shoreline change was conducted by Hilbert-Huang transform (Huang et al., 1998). By Empirical Mode Decomposition (EMD), 14-year shoreline position data was decomposed into only eight Intrinsic Mode Functions (IMFs) from a short period to a long period. The IMFs from 6th to 9threpresented long-period components. Their mean periods calculated by an instantaneous frequencyare more than 1-year. Variations of amplitude of these components are from 10 to 20 m although yearly averaged variation of shoreline position is from 30 to 40m. The contribution of more than 1-year period components was evaluated by the variance, and its ratio was more than 30% in the measurement. The result suggests that the long-period components have much influence on the trend of long-term shoreline change

    PROPOSAL OF NEW K-FACTOR FUNCTION IN LIGHTNING IMPULSE TEST FOR ELECTRIC POWER EQUIPMENT

    Get PDF
    Ultra high voltage (UHV) systems are increasingly being planned and constructed, hence studies are promoted on the standard for high-voltage test techniques for UHV-class equipment. For the lightning impulse voltage test, a study is being conducted on the application of a method of evaluating the test waveform through conversion using the test voltage function (k-factor function) that was adopted in IEC 60060-1. The existing k-factor function was established based on the experimental results for more compact models, as compared with the insulating structure of UHV-class equipment, mainly with a breakdown voltage of about 100 kV. To determine whether this k-factor function can also be used for the test of UHV-class equipment, the experimental results for large-sized models were needed. In the present paper, to address this issue, the authors initially obtained k-factor values experimentally using the largest possible model (UHV model) assuming UHV-class equipment. Substantially, a study was conducted on a new k-factor function based on these experimental results. First, in the study, several ideas for the k-factor function were shown and applied to various waveforms to clarify their advantages and disadvantages. Next, in addition to these results, a study was conducted on a k-factor function suitable for UHV-class equipment with considering the actual UHV facilities. Consequently, it was concluded that the form of the function should be the same as that of the existing one but that it would be reasonable to adopt a relatively lower k-factor function for UHV-class equipment by revising the constant. Further, this new function could replace the existing one in 60060-1 for all voltage classes to consider the breakdown voltage ranges as a basis and LIWV (Lightning Impulse Withstand Voltage) values.20th International Symposium on High Voltage Engineering, August 28 - September 01, 2017, Buenos Aires, Argentin

    Combining cluster observables and stacked weak lensing to probe dark energy: Self-calibration of systematic uncertainties

    Full text link
    We develop a new method of combining cluster observables (number counts and cluster-cluster correlation functions) and stacked weak lensing signals of background galaxy shapes, both of which are available in a wide-field optical imaging survey. Assuming that the clusters have secure redshift estimates, we show that the joint experiment enables a self-calibration of important systematic errors including the source redshift uncertainty and the cluster mass-observable relation, by adopting a single population of background source galaxies for the lensing analysis. It allows us to use the relative strengths of stacked lensing signals at different cluster redshifts for calibrating the source redshift uncertainty, which in turn leads to accurate measurements of the mean cluster mass in each bin. In addition, our formulation of stacked lensing signals in Fourier space simplifies the Fisher matrix calculations, as well as the marginalization over the cluster off-centering effect, the most significant uncertainty in stacked lensing. We show that upcoming wide-field surveys yield stringent constraints on cosmological parameters including dark energy parameters, without any priors on nuisance parameters that model systematic uncertainties. Specifically, the stacked lensing information improves the dark energy FoM by a factor of 4, compared to that from the cluster observables alone. The primordial non-Gaussianity parameter can also be constrained with a level of f_NL~10. In this method, the mean source redshift is well calibrated to an accuracy of 0.1 in redshift, and the mean cluster mass in each bin to 5-10% accuracies, which demonstrates the success of the self-calibration of systematic uncertainties from the joint experiment. (Abridged)Comment: 29 pages, 17 figures, 6 tables, accepted for publication in Phys. Rev.

    In Vivo Observation of Structural Changes in Neocortical Catecholaminergic Projections in Response to Drugs of Abuse

    Get PDF
    Catecholaminergic (dopamine and norepinephrine) projections to the cortex play an important role in cognitive functions and dysfunctions including learning, addiction, and mental disorders. While dynamics of glutamatergic synapses have been well studied in such contexts, little is known regarding catecholaminergic projections, owing to lack of robust methods. Here we report a system to monitor catecholaminergic projections in vivo over the timeframes that such events occur. Green fluorescent protein (GFP) expression driven by tyrosine hydroxylase promoter in a transgenic mouse line enabled us to perform two-photon imaging of cortical catecholaminergic projections through a cranial window. Repetitive imaging of the same axons over 24 h revealed the highly dynamic nature of catecholaminergic boutons. Surprisingly, administration of single high dose methamphetamine (MAP) induced a transient increase in bouton volumes. This new method opens avenues for longitudinal in vivo evaluation of structural changes at single release sites of catecholamines in association with physiology and pathology of cortical functions

    Halo-Galaxy Lensing: A Full Sky Approach

    Get PDF
    The halo-galaxy lensing correlation function or the average tangential shear profile over sampled halos is a very powerful means of measuring the halo masses, the mass profile, and the halo-mass correlation function of very large separations in the linear regime. We reformulate the halo-galaxy lensing correlation in harmonic space. We find that, counter-intuitively, errors in the conventionally used flat-sky approximation remain at a % level even at very small angles. The errors increase at larger angles and for lensing halos at lower redshifts: the effect is at a few % level at the baryonic acoustic oscillation scales for lensing halos of z0.2z\sim 0.2, and comparable with the effect of primordial non-Gaussianity with fNL10f_{\rm NL}\sim 10 at large separations. Our results allow to readily estimate/correct for the full-sky effect on a high-precision measurement of the average shear profile available from upcoming wide-area lensing surveys.Comment: 12 pages, 4 figure
    corecore