74 research outputs found

    MOLNUPIRAVIR COMPARED TO NIRMATRELVIR/RITONAVIR FOR COVID-19 IN HIGH-RISK PATIENTS WITH HAEMATOLOGICAL MALIGNANCY IN EUROPE. A MATCHED-PAIRED ANALYSIS FROM THE EPICOVIDEHA REGISTRY

    Get PDF
    Introduction: Molnupiravir and nirmatrelvir/ritonavir are antivirals used to prevent progression to severe SARS-CoV-2 infections, which reduce both hospitalization and mortality rates. Nirmatrelvir/ritonavir was authorised in Europe in December 2021, while molnupiravir is not yet licensed in Europe as of February 2022. Molnupiravir may be an alternative to nirmatrelvir/ritonavir, because it displays less frequent drug-drug interactions and contraindications. A caveat connected to molnupiravir derives from the mode of action inducing viral mutations. In clinical trials on patients without haematological malignancy, mortality rate reduction of molnupiravir appeared less pronounced than that of nirmatrelvir/ritonavir. Little is known about the comparative efficacy of the two drugs in patients with haematological malignancy at high-risk of severe COVID-19. Thus, we here assess the effectiveness of molnupiravir compared to nirmatrelvir/ritonavir in our cohort of patients with haematological malignancies. Methods: Clinical data of patients treated either with molnupiravir or nirmatrelvir/ritonavir monotherapy for COVID-19 were retrieved from the EPICOVIDEHA registry. Patients treated with molnupiravir were matched by sex, age (±10 years), and baseline haematological malignancy severity to controls treated with nirmatrelvir/ritonavir. Results: A total of 116 patients receiving molnupiravir for the clinical management of COVID-19 were matched to an equal number of controls receiving nirmatrelvir/ritonavir. In each of the groups, 68 (59%) patients were male; with a median age of 64 years (IQR 53-74) for molnupiravir recipients and 64 years (IQR 54-73) for nirmatrelvir/ritonavir recipients; 57% (n=66) of the patients had controlled baseline haematological malignancy, 13% (n=15) stable, and 30% (n=35) had active disease at COVID-19 onset in each of the groups. During COVID-19 infection, one third of patients from each group were admitted to hospital. Although a similar proportion of vaccinated patients was observed in both groups (molnupiravir n=77, 66% vs nirmatrelvir/ritonavir n=87, 75%), those treated with nirmatrelvir/ritonavir had more often received four doses (n=27, 23%) as compared to patients treated with molnupiravir (n=5, 4%, p<0.001). No differences were detected in COVID-19 severity (p=0.39) or hospitalization (p=1.0). No statistically significant differences were identified in overall mortality rate (p=0.78) or in survival probability (d30 p=0.19, d60 p=0.67, d90 p=0.68, last day of follow up p=0.68). In all patients, deaths were either attributed to COVID-19 or the infection contributed to death as per treating physician's judgement. Conclusions: In high-risk patients with haematological malignancies and COVID-19, molnupiravir showed rates of hospitalization and mortality comparable to those of nirmatrelvir/ritonavir in this matched-pair analysis. Molnupiravir appears to be a plausible alternative to nirmatrelvir/ritonavir for COVID-19 treatment in patients with haematological malignancy

    Efficacy of the local endometrial injury in patients who had previous failed IVF-ICSI outcome

    No full text
    Background: The latest studies reported that local endometrial injury is a useful method to improve the success of IVF-ICSI outcome. Objective: To assess whether local endometrial injury occurred by Pipelle in the spontaneous cycle could improve implantation rate, cleavage rate, and pregnancy outcome in the subsequent IVF-ICSI cycle in patients who had recurrent IVF failure. Materials and Methods: An endometrial biopsy was performed on day 21st in 41 patients as intervention group in this retrospective cross-sectional study. The control group contained 42 women. Results: Implantation rate was 22.5% and 10.5% in intervention and control group, respectively and this difference was found to be statistically significant (p=001). Pregnancy rate was 43.9% in the intervention group and this parameter was significantly lower in control group (21.4%) (p=0.03). Conclusion: Local endometrial injury in the nontransfer cycle increases the implantation rate and pregnancy rate in the subsequent IVF-ICSI cycle in patients who had previous failed IVF-ICSI outcome

    Poly(Glycerol) Microparticles as Drug Delivery Vehicle for Biomedical Use

    No full text
    Glycerol (Gly) is a well-known, FDA-approved molecule posing three hydroxyl groups. Since Gly is biocompatible, here, it was aimed to prepare poly(Glycerol) (p(Gly)) particles directly for the first time for the delivery of therapeutic agents. Micrometer-sized particles of p(Gly) were successfully synthesized via the micro-emulsion method with an average size of 14.5 ± 5.6 µm. P(Gly) microparticles up to 1.0 g/mL concentrations were found biocompatible with 85 ± 1% cell viability against L929 fibroblasts. Moreover, p(Gly) microparticles were tested for hemocompatibility, and it was found that up to 1.0 mg/mL concentrations the particles were non-hemolytic with 0.4 ± 0.1% hemolysis ratios. In addition, the blood compatibility index values of the prepared p(Gly) particles were found as 95 ± 2%, indicating that these microparticles are both bio- and hemocompatible. Furthermore, Quercetin (QC) flavonoid, which possessed high antioxidant properties, was loaded into p(Gly) microparticles to demonstrate drug-carrying properties of the particles with improved bioavailability, non-toxicity, and high biocompatibility. The results of this study evidently revealed that p(Gly) particles can be directly prepared from a cost-effective and easily accessible glycerol molecule and the prepared particles exhibited good biocompatibility, hemocompatibility, and non-toxicity. Therefore, p(Gly) particles were found as promising vehicles for drug delivery systems in terms of their higher loading and release capability as well as for sustained long term release profiles

    Polyelectrolyte Chondroitin Sulfate Microgels as a Carrier Material for Rosmarinic Acid and Their Antioxidant Ability

    No full text
    Polyelectrolyte microgels derived from natural sources such as chondroitin sulfate (CS) possess considerable interest as therapeutic carriers because of their ionic nature and controllable degradation capability in line with the extent of the used crosslinker for long-term drug delivery applications. In this study, chemically crosslinked CS microgels were synthesized in a single step and treated with an ammonia solution to attain polyelectrolyte CS−[NH4]+ microgels via a cation exchange reaction. The spherical and non-porous CS microgels were injectable and in the size range of a few hundred nanometers to tens of micrometers. The average size distribution of the CS microgels and their polyelectrolyte forms were not significantly affected by medium pH. It was determined that the −34 ± 4 mV zeta potential of the CS microgels was changed to −23 ± 3 mV for CS− [NH4]+ microgels with pH 7 medium. No important toxicity was determined on L929 fibroblast cells, with 76 ± 1% viability in the presence of 1000 μg/mL concentration of CS−[NH4]+ microgels. Furthermore, these microgels were used as a drug carrier material for rosmarinic acid (RA) active agent. The RA-loading capacity was about 2.5-fold increased for CS−[R]+ microgels with 32.4 ± 5.1 μg/mg RA loading, and 23% of the loaded RA was sustainably release for a long-term period within 150 h in comparison to CS microgels. Moreover, RA-loaded CS−[R]+ microgels exhibited great antioxidant activity, with 0.45 ± 0.02 μmol/g Trolox equivalent antioxidant capacity in comparison to no antioxidant properties for bare CS particles

    Carboxymethyl Chitosan Microgels for Sustained Delivery of Vancomycin and Long-Lasting Antibacterial Effects

    No full text
    Carboxymethyl chitosan (CMCh) is a unique polysaccharide with functional groups that can develop positive and negative charges due to the abundant numbers of amine and carboxylic acid groups. CMCh is widely used in different areas due to its excellent biocompatibility, biodegradability, water solubility, and chelating ability. CMCh microgels were synthesized in a microemulsion environment using divinyl sulfone (DVS) as a crosslinking agent. CMCh microgel with tailored size and zeta potential values were obtained in a single stem by crosslinking CMCh in a water-in-oil environment. The spherical microgel structure is confirmed by SEM analysis. The sizes of CMCh microgels varied from one micrometer to tens of micrometers. The isoelectric point of CMCh microgels was determined as pH 4.4. Biocompatibility of CMCh microgels was verified on L929 fibroblasts with 96.5 ± 1.5% cell viability at 1 mg/mL concentration. The drug-carrying abilities of CMCh microgels were evaluated by loading Vancomycin (Van) antibiotic as a model drug. Furthermore, the antibacterial activity efficiency of Van-loaded CMCh microgels (Van@CMCh) was investigated. The MIC values of the released drug from Van@CMCh microgels were found to be 68.6 and 7.95 µg/mL against E. coli and S. aureus, respectively, at 24 h contact time. Disk diffusion tests confirmed that Van@CMCh microgels, especially for Gram-positive (S. aureus) bacteria, revealed long-lasting inhibitory effects on bacteria growth up to 72 h

    Degradable and Non-Degradable Chondroitin Sulfate Particles with the Controlled Antibiotic Release for Bacterial Infections

    No full text
    Non-degradable, slightly degradable, and completely degradable micro/nanoparticles derived from chondroitin sulfate (CS) were synthesized through crosslinking reactions at 50%, 40%, and 20% mole ratios, respectively. The CS particles with a 20% crosslinking ratio show total degradation within 48 h, whereas 50% CS particles were highly stable for up to 240 h with only 7.0 ± 2.8% weight loss in physiological conditions (pH 7.4, 37 °C). Tobramycin and amikacin antibiotics were encapsulated into non-degradable CS particles with high loading at 250 g/mg for the treatment of corneal bacterial ulcers. The highest release capacity of 92 ± 2% was obtained for CS-Amikacin particles with sustainable and long-term release profiles. The antibacterial effects of CS particles loaded with 2.5 mg of antibiotic continued to render a prolonged release time of 240 h with 24 ± 2 mm inhibition zones against Pseudomonas aeruginosa. Furthermore, as a carrier, CS particles significantly improved the compatibility of the antibiotics even at high particle concentrations of 1000 g/mL with a minimum of 71 ± 7% fibroblast cell viability. In summary, the sustainable delivery of antibiotics and long-term treatment of bacterial keratitis were shown to be afforded by the design of tunable degradation ability of CS particles with improved biocompatibility for the encapsulated drugs

    Polyethyleneimine modified poly(Hyaluronic acid) particles with controllable antimicrobial and anticancer effects

    No full text
    WOS: 000393529200004PubMed ID: 28038751Poly(hyaluronic acid) (p(HA)) particles with sizes from few hundred nm to few tens of micrometer were synthesized by using epoxy groups containing crosslinker glycerol diglycidyl ether (GDE) with high yield, 94 +/- 5%. P(HA) particles were oxidized by treatment with sodium periodate and then reacted with cationic polyethyleneimine (PEI) at 1:0.5,1:1, and 1:2 wt ratio of p(HA):PEI to obtain p(HA)-PEI particles. From zeta potential measurements, isoelectronic points of bare p(HA) particles increased to pH 8.7 from 2.7 after modification with cationic PEI. New properties, such as antibacterial property, were attained for p(HA)-PEI after modification. The highest minimum bactericidal concentration (MBC) values were 0.5, 1, and 0.5 mg/mL against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis species for 1:0.5 ratio of p(HA)-PEI at 72 h incubation time. Moreover, the p(HA)-PEI particles were found to be biocompatible with L929 fibroblast cells, and interestingly, p(HA)-PEI particles were found to inhibit MDA-MB-231 breast and H1299 cancer cell growth depending on amount of PEI in p(HA)-PEI particles. (C) 2016 Elsevier Ltd. All rights reserved
    corecore