74 research outputs found

    Is there a common water-activity limit for the three domains of life?

    Get PDF
    Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (a w) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650-0.605 a w. Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 a w). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 a w for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (∼0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 a w for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life

    Evaluation of sand filtration and activated carbon adsorption for the post-treatment of a secondary biologically-treated fungicide-containing wastewater from fruit-packing industries

    No full text
    In this work, a sand filtration-activated carbon adsorption system was evaluated to remove the fungicide content of a biologically treated effluent. The purification process was mainly carried out in the activated carbon column, while sand filtration slightly contributed to the improvement of the pollutant parameters. The tertiary treatment system, which operated under the batch mode for 25 bed volumes, resulted in total and soluble COD removal efficiencies of 76.5 ± 1.5% and 88.2 ± 1.3%, respectively, detecting total COD concentrations below 50 mg/L in the permeate of the activated carbon column. A significant pH increase and a respective electrical conductivity (EC) decrease also occurred after activated carbon adsorption. The total and ammonium nitrogen significantly decreased, with determined concentrations of 2.44 ± 0.02 mg/L and 0.93 ± 0.19 mg/L, respectively, in the activated carbon permeate. Despite that, the initial imazalil concentration was greater than that of the fludioxonil in the biologically treated effluent (i.e., 41.26 ± 0.04 mg/L versus 7.35 ± 0.43 mg/L, respectively). The imazalil was completely removed after activated carbon adsorption, while a residual concentration of fludioxonil was detected. Activated carbon treatment significantly detoxified the biologically treated fungicide-containing effluent, increasing the germination index by 47% in the undiluted wastewater or by 68% after 1:1 v/v dilution. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Bioprocess performance, transformation pathway, and bacterial community dynamics in an immobilized cell bioreactor treating fludioxonil-contaminated wastewater under microaerophilic conditions

    No full text
    Fludioxonil is a post-harvest fungicide contained in effluents produced by fruit packaging plants, which should be treated prior to environmental dispersal. We developed and evaluated an immobilized cell bioreactor, operating under microaerophilic conditions and gradually reduced hydraulic retention times (HRTs) from 10 to 3.9 days, for the biotreatment of fludioxonil-rich wastewater. Fludioxonil removal efficiency was consistently above 96%, even at the shortest HRT applied. A total of 12 transformation products were tentatively identified during fludioxonil degradation by using liquid chromatography coupled to quadrupole time-of-flight Mass spectrometry (LC-QTOF-MS). Fludioxonil degradation pathway was initiated by successive hydroxylation and carbonylation of the pyrrole moiety and disruption of the oxidized cyanopyrrole ring at the NH-C bond. The detection of 2,2-difluoro-2H-1,3-benzodioxole-4-carboxylic acid verified the decyanation and deamination of the molecule, whereas its conversion to the tentatively identified compound 2,3-dihydroxybenzoic acid indicated its defluorination. High-throughput amplicon sequencing revealed that HRT shortening led to reduced α-diversity, significant changes in the β-diversity, and a shift in the bacterial community composition from an initial activated sludge system typical community to a community composed of bacterial taxa like Clostridium, Oligotropha, Pseudomonas, and Terrimonas capable of performing advanced degradation and/or aerobic denitrification. Overall, the immobilized cell bioreactor operation under microaerophilic conditions, which minimizes the cost for aeration, can provide a sustainable solution for the depuration of fludioxonil-contaminated agro-industrial effluents. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature

    Biotreatment and bacterial succession in an upflow immobilized cell bioreactor fed with fludioxonil wastewater

    No full text
    The large quantities and the persistent nature of fungicide wastewaters have increased the efforts towards a sustainable technological solution. In this context, fludioxonil-contaminated wastewater was treated in an upflow immobilized cell bioreactor, resulting in chemical oxygen demand (COD) removal efficiency even higher than 80%, whereas the electrical conductivity (EC) of the effluent was gradually increased. Organic-F was mineralized by 94.0 ± 5.2%, which was in accordance with the high fludioxonil removal efficiency (95.4 ± 4.0%). In addition, effluent total Kjeldahl nitrogen (TKN) concentration reduced significantly during bioprocessing. A strong relationship among COD removal, TKN/total nitrogen removal, and effluent EC increase (p < 0.01) was identified. Despite the adequate aeration provided, effluent nitrite and nitrate concentrations were negligible. Illumina sequencing revealed a reduction in the relative abundances of Betaproteobacteria, Chloroflexi, Planctomycetes, and Firmicutes and an increase in the proportion of Alphaproteobacteria and Actinobacteria. A shift in bacterial communities occurred during fludioxonil treatment, resulting in the significant increase of the relative abundances of Empedobacter, Sphingopyxis, and Rhodopseudomonas (from 0.67 ± 0.13% at the start-up to 34.34 ± 1.60% at the end of biotreatment). In conclusion, the immobilized cell bioreactor permitted the proliferation of specialized activated sludge microbiota with an active role in the depuration of postharvest fungicides. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature

    Enterobacter sp. AA26 gut symbiont as a protein source for Mediterranean fruit fly mass-rearing and sterile insect technique applications

    No full text
    Background: Insect species have established sophisticated symbiotic associations with diverse groups of microorganisms including bacteria which have been shown to affect several aspects of their biology, physiology, ecology and evolution. In addition, recent studies have shown that insect symbionts, including those localized in the gastrointestinal tract, can be exploited for the enhancement of sterile insect technique (SIT) applications against major insect pests such as the Mediterranean fruit fly (medfly) Ceratitis capitata. We previously showed that Enterobacter sp. AA26 can be used as probiotic supplement in medfly larval diet improving the productivity and accelerating the development of the VIENNA 8 genetic sexing strain (GSS), which is currently used in large scale operational SIT programs worldwide. Results: Enterobacter sp. AA26 was an adequate nutritional source for C. capitata larvae, comprising an effective substitute for brewer's yeast. Incorporating inactive bacterial cells in the larval diet conferred a number of substantial beneficial effects on medfly biology. The consumption of bacteria-based diet (either as full or partial yeast replacement) resulted in decreased immature stages mortality, accelerated immature development, increased pupal weight, and elongated the survival under stress conditions. Moreover, neither the partial nor the complete replacement of yeast with Enterobacter sp. AA26 had significant impact on adult sex ratio, females' fecundity, adults' flight ability and males' mating competitiveness. The absence of both yeast and Enterobacter sp. AA26 (deprivation of protein source and possible other important nutrients) from the larval diet detrimentally affected the larval development, survival and elongated the immature developmental duration. Conclusions: Enterobacter sp. AA26 dry biomass can fully replace the brewer's yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS as assessed by the FAO/IAEA/USDA standard quality control tests. We discuss this finding in the context of mass-rearing and SIT applications. © 2019 The Author(s)

    Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain

    No full text
    An endophytic fungal isolate (Fs-K), identified as a Fusarium solani strain, was obtained from root tissues of tomato plants grown on a compost which suppressed soil and foliar pathogens. Strain Fs-K was able to colonize root tissues and subsequently protect plants against the root pathogen Fusarium oxysporum f.sp. radicis-lycopersici (FORL), and elicit induced systemic resistance against the tomato foliar pathogen Septoria lycopersici. Interestingly, attenuated expression of certain pathogenesis-related genes, i.e. PR5 and PR7, was detected in tomato roots inoculated with strain Fs-K compared with non-inoculated plants. The expression pattern of PR genes was either not affected or aberrant in leaves. A genetic approach, using mutant tomato plant lines, was used to determine the role of ethylene and jasmonic acid in the plant&apos;s response to infection by the soil-borne pathogen F. oxysporum f.sp. radicis-lycopersici (FORL), in the presence or absence of isolate Fs-K. Mutant tomato lines Never ripe (Nr) and epinastic (epi1), both impaired in ethylene-mediated plant responses, inoculated with FORL are not protected by isolate Fs-K, indicating that the ethylene signalling pathway is required for the mode of action used by the endophyte to confer resistance. On the contrary, def1 mutants, affected in jasmonate biosynthesis, show reduced susceptibility to FORL, in the presence Fs-K, which suggests that jasmonic acid is not essential for the mediation of biocontrol activity of isolate Fs-K. © 2007 The Author(s)

    Isolation of a diphenylamine-degrading bacterium and characterization of its metabolic capacities, bioremediation and bioaugmentation potential

    No full text
    The antioxidant diphenylamine (DPA) is used in fruit-packaging plants for the control of the physiological disorder apple scald. Its use results in the production of DPA-contaminated wastewater which should be treated before finally discharged. Biological treatment systems using tailored-made microbial inocula with specific catabolic activities comprise an appealing and sustainable solution. This study aimed to isolate DPA-degrading bacteria, identify the metabolic pathway of DPA and evaluate their potential for future implementation in bioremediation and biodepuration applications. A Pseudomonas putida strain named DPA1 able to rapidly degrade and utilize DPA as the sole C and N source was enriched from a DPA-contaminated soil. The isolated strain degraded spillage-level concentrations of DPA in liquid culture (2000 mg L−1) and in contaminated soil (1000 mg kg−1) and metabolized DPA via the transient formation of aniline and catechol. Further evidence for the bioremediation and biodepuration potential of the P. putida strain DPA1 was provided by its capacity to degrade the post-harvest fungicide ortho-phenylphenol (OPP), concurrently used by the fruit-packaging plants, although at slower rates and DPA in a wide range of pH (4.5–9) and temperatures (15–37 °C). These findings revealed the high potential of the P. putida strain DPA1 for use in future soil bioremediation strategies and/or as start-up inocula in wastewater biodepuration systems. © 2015 Springer-Verlag Berlin Heidelber

    Biodegradation potential and diversity of diclofenac-degrading microbiota in an immobilized cell biofilter

    No full text
    Despite that diclofenac has been embodied to the European watch list of priority substances of concern, studies on diclofenac biodegradation are limited and the diversity of diclofenac-degrading microbiota remains unknown. In this work, an immobilized cell biofilter was constructed and operated to evaluate its effectiveness to depurate high strength diclofenac wastewater and to identify the diclofenac-degrading community accommodated in activated sludge by employing high-throughput sequencing techniques. After a two-month adaptation period, biofilter removal efficiencies reached values as high as 97.63 ± 0.62%, whereas utilization of diclofenac in the immobilized cell biofilter led to a drastic pH decrease. Based on Illumina sequencing, the major bacterial taxa identified in the immobilized cell biofilter were members of the species Granulicella pectinivorans and Rhodanobacter terrae, followed by members of the species Castellaniella denitrificans, Parvibaculum lavamentivorans, Bordetella petrii, Bryocella elongata and Rhodopseudomonas palustris. The ability of such taxa to utilize a wide range of carbon sources and to effectively adapt under acidic conditions seemed to be the main parameters, which favored their prevalence in the immobilized cell biofilter. In addition, Wickerhamiella was the predominant fungal taxon in the immobilized cell biofilter, which appears to be actively involved in diclofenac degradation in activated sludge systems. © 2019 by the authors
    corecore