946 research outputs found

    Monotherapy in serious hospital-acquired infections: a clinical trial of ceftazidime versus imipenem/cilastatin

    Get PDF
    The clinical and bacteriological efficacy and safety of the antibiotics ceftazidime or imipenem/cilastatin in seriously ill patients with nosocomial infections were compared in a prospective, open, evaluator-blind, multicentre comparative trial. The study was performed in 26 European centres, the majority being intensive care units. Subjects were randomized to receive either ceftazidime 2 g bid or imipenem cilastatin 0·5 g qid given for at least five days after stratification for pneumonia, septicaemia or urinary tract infection (UTI). Three hundred and ninety-three patients with serious nosocomial infections (254 with pneumonia; 91 with septicaemia and 48 UTI were treated between February 1988 and January 1990 and their clinical and bacteriological response to antibiotic treatment assessed. There were no significant differences between ceftazidime and imipenem/cilastatin in clinical efficacy. The failure rates in evaluable patients were 22 and 26% in pneumonia, 23 and 19% in septicaemia and 0 and 5% respectively in those with UTI. Overall there was no significant difference between the two antibiotics for bacteriological response in the three infection strata. However, in patients with pneumonia ceftazidime was significantly more effective than imipenem/cilastatin in clearing patients of Pseudomonas spp.: 3/17 and 11/19 patients respectively had persistent growth of Pseudomonas spp. post-treatment (P = 0·004), and in one ceftazidime failure resistance emerged compared to six imipenem/cilastatin failures in which resistance emerged. Few drug-related adverse events were recorded in either treatment group. Monotherapy with either ceftazidime (2 g bid) or imipenem/cilastatin (0·5 g qid) is safe and effective and could be considered as an alternative to combination therapy for the treatment of serious hospital-acquired infection

    Viable Group A Streptococci in Macrophages during Acute Soft Tissue Infection

    Get PDF
    BACKGROUND: Group A streptococcal severe soft tissue infections, such as necrotizing fasciitis, are rapidly progressive infections associated with high mortality. Group A streptococcus is typically considered an extracellular pathogen, but has been shown to reside intracellularly in host cells. METHODS AND FINDINGS: We characterized in vivo interactions between group A streptococci (GAS) and cells involved in innate immune responses, using human biopsies (n = 70) collected from 17 patients with soft tissue infections. Immunostaining and in situ image analysis revealed high amounts of bacteria in the biopsies, even in those collected after prolonged antibiotic therapy. Viability of the streptococci was assessed by use of a bacterial viability stain, which demonstrated viable bacteria in 74% of the biopsies. GAS were present both extracellularly and intracellularly within phagocytic cells, primarily within macrophages. Intracellular GAS were predominantly noted in biopsies from newly involved tissue characterized by lower inflammation and bacterial load, whereas purely extracellular GAS or a combination of intra- and extracellular GAS dominated in severely inflamed tissue. The latter tissue was also associated with a significantly increased amount of the cysteine protease streptococcal pyrogenic exotoxin SpeB. In vitro studies confirmed that macrophages serve as reservoirs for viable GAS, and infection with a speB-deletion mutant produced significantly lower frequencies of cells with viable GAS following infection as compared to the wild-type bacteria. CONCLUSIONS: This is the first study to demonstrate that GAS survive intracellularly in macrophages during acute invasive infections. This intracellular presence may have evolved as a mechanism to avoid antibiotic eradication, which may explain our finding that high bacterial load is present even in tissue collected after prolonged intravenous antibiotic therapy. This new insight into the pathogenesis of streptococcal soft tissue infections highlights a need for alternative therapeutic strategies

    Necrotizing soft tissue infections - a multicentre, prospective observational study (INFECT) : Protocol and statistical analysis plan

    Get PDF
    Background: The INFECT project aims to advance our understanding of the pathophysiological mechanisms in necrotizing soft tissue infections (NSTIs). The INFECT observational study is part of the INFECT project with the aim of studying the clinical profile of patients with NSTIs and correlating these to patient-important outcomes. With this protocol and statistical analysis plan we describe the methods used to obtain data and the details of the planned analyses. Methods: The INFECT study is a multicentre, prospective observational cohort study. Patients with NSTIs are enrolled in five Scandinavian hospitals, which are all referral centres for NSTIs. The primary outcomes are the descriptive variables of the patients. Secondary outcomes include identification of factors associated with 90-day mortality and amputation; associations between affected body part, maximum skin defect and Laboratory Risk Indicator for Necrotizing Fasciitis (LRINEC) score and 90-day mortality; 90-day mortality in patients with and without acute kidney injury (AKI) and LRINEC score of six and above or below six; and association between affected body part at arrival and microbiological findings. Exploratory outcomes include univariate analyses of baseline characteristics associations with 90-day mortality. The statistical analyses will be conducted in accordance with the predefined statistical analysis plan. Conclusion: Necrotizing soft tissue infections result in severe morbidity and mortality. The INFECT study will be the largest prospective study in patients with NSTIs to date and will provide important data for clinicians, researchers and policy makers on the characteristics and outcomes of these patients.</p

    Preparation, structural characterisation and antibacterial properties of Ga-doped sol-gel phosphate-based glass

    Get PDF
    A sol-gel preparation of Ga-doped phosphate-based glass with potential application in antimicrobial devices has been developed. Samples of composition (CaO)(0.30)(Na2O)(0.20-x) (Ga2O3) (x) (P2O5)(0.50) where x = 0 and 0.03 were prepared, and the structure and properties of the gallium-doped sample compared with those of the sample containing no gallium. Analysis of the P-31 MAS NMR data demonstrated that addition of gallium to the sol-gel reaction increases the connectivity of the phosphate network at the expense of hydroxyl groups. This premise is supported by the results of the elemental analysis, which showed that the gallium-free sample contains significantly more hydrogen and by FTIR spectroscopy, which revealed a higher concentration of -OH groups in that sample. Ga K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure data revealed that the gallium ions are coordinated by six oxygen atoms. In agreement with the X-ray absorption data, the high-energy XRD results also suggest that the Ga3+ ions are octahedrally coordinated with respect to oxygen. Antimicrobial studies demonstrated that the sample containing Ga3+ ions had significant activity against Staphylococcus aureus compared to the control

    The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria

    Get PDF
    Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel

    Streptococcal necrotising fasciitis from diverse strains of Streptococcus pyogenes in tropical northern Australia: case series and comparison with the literature

    Get PDF
    BACKGROUND: Since the mid-1980's there has been a worldwide resurgence of severe disease from group A streptococcus (GAS), with clonal clusters implicated in Europe and the United States. However GAS associated sepsis and rheumatic fever have always remained at high levels in many less developed countries. In this context we aimed to study GAS necrotising fasciitis (NF) in a region where there are high background rates of GAS carriage and disease. METHODS: We describe the epidemiology, clinical and laboratory features of 14 consecutive cases of GAS NF treated over a seven year period from tropical northern Australia. RESULTS: Incidence rates of GAS NF in the Aboriginal population were up to five times those previously published from other countries. Clinical features were similar to those described elsewhere, with 7/14 (50%) bacteremic and 9/14 (64%) having associated streptococcal toxic shock syndrome. 11/14 (79%) had underlying chronic illnesses, including all four fatalities (29% mortality overall). Important laboratory differences from other series were that leukocytosis was absent in 9/14 (64%) but all had substantial lymphopenia. Sequence typing of the 14 NF-associated GAS isolates showed no clonality, with only one emm type 1 and two emm type 3 strains. CONCLUSIONS: While NF clusters can occur from a single emergent GAS clone, this was not evident in our tropical region, where high rates of NF parallel high overall rates of GAS infection from a wide diversity of strains. The specific virulence factors of GAS strains which do cause NF and the basis of the inadequate host response in those patients who develop NF on infection with these GAS require further elucidation
    corecore