834 research outputs found

    Genèse et fonctionnement des sols en milieu équatorial

    Get PDF
    La genèse des sols en milieu équatorial présente une forte composante biologique. La structure générale des profils ferrallitiques s'explique par le recyclage biologique des principaux éléments intervenant dans les équilibres minéraux-solutions, et la plupart des minéraux secondaires des sols ferrallitiques sont en rééquilibrage constant avec les conditions du milieu. La genèse des podzols est liée à une exportation précoce des composés organo-métalliques formés dans les horizons de surface, dépendante de la dynamique de l'eau à l'échelle des systèmes. (Résumé d'auteur

    Novel techniques in VUV high-resolution spectroscopy

    Full text link
    Novel VUV sources and techniques for VUV spectroscopy are reviewed. Laser-based VUV sources have been developed via non-linear upconversion of laser pulses in the nanosecond (ns), the picosecond (ps), and femtosecond (fs) domain, and are applied in high-resolution gas phase spectroscopic studies. While the ns and ps pulsed laser sources, at Fourier-transform limited bandwidths, are used in wavelength scanning spectroscopy, the fs laser source is used in a two-pulse time delayed mode. In addition a Fourier-transform spectrometer for high resolution gas-phase spectroscopic studies in the VUV is described, exhibiting the multiplex advantage to measure many resonances simultaneously.Comment: 17 Pages, 8 figures, Conference proceedings of the VUV/X-ray 2013 at Hefei, Chin

    Vibrationally induced inversion of photoelectron forward-backward asymmetry in chiral molecule photoionization by circularly polarized light

    Get PDF
    Electron–nuclei coupling accompanying excitation and relaxation processes is a fascinating phenomenon in molecular dynamics. A striking and unexpected example of such coupling is presented here in the context of photoelectron circular dichroism measurements on randomly oriented, chiral methyloxirane molecules, unaffected by any continuum resonance. Here, we report that the forward-backward asymmetry in the electron angular distribution, with respect to the photon axis, which is associated with photoelectron circular dichroism can surprisingly reverse direction according to the ion vibrational mode excited. This vibrational dependence represents a clear breakdown of the usual Franck–Condon assumption, ascribed to the enhanced sensitivity of photoelectron circular dichroism (compared with other observables like cross-sections or the conventional anisotropy parameter-β) to the scattering phase off the chiral molecular potential, inducing a dependence on the nuclear geometry sampled in the photoionization process. Important consequences for the interpretation of such dichroism measurements within analytical contexts are discussed

    Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice - including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA

    Susceptibility to Misinformation about COVID-19 Vaccines: A Signal Detection Analysis

    Full text link
    An analysis drawing on Signal Detection Theory suggests that people may fall for misinformation because they are unable to discern true from false information (truth insensitivity) or because they tend to accept information with a particular slant regardless of whether it is true or false (belief bias). Three preregistered experiments with participants from the United States and the United Kingdom (N = 961) revealed that (i) truth insensitivity in responses to (mis)information about COVID-19 vaccines differed as a function of prior attitudes toward COVID-19 vaccines; (ii) participants exhibited a strong belief bias favoring attitude-congruent information; (iii) truth insensitivity and belief bias jointly predicted acceptance of false information about COVID-19 vaccines, but belief bias was a much stronger predictor; (iv) cognitive elaboration increased truth sensitivity without reducing belief bias; and (v) higher levels of confidence in one's beliefs were associated with greater belief bias. The findings provide insights into why people fall for misinformation, which is essential for individual-level interventions to reduce susceptibility to misinformation

    Controlled production of atomic oxygen and nitrogen in a pulsed radio-frequency atmospheric-pressure plasma

    Get PDF
    International audienceRadio-frequency driven atmospheric pressure plasmas are efficient sources for the production of reactive species at ambient pressure and close to room temperature. Pulsing the radio-frequency power input provides additional control over species production and gas temperature. Here, we demonstrate the controlled production of highly reactive atomic oxygen and nitrogen in a pulsed radio-frequency ( ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn001.gif] 13.56 MHz) atmospheric-pressure plasma, operated with a small ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn002.gif] 0.1 % air-like admixture ( ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn003.gif] \rm N_2 / ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn004.gif] \rm O_2 at ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn005.gif] 4:1 ) through variations in the duty cycle. Absolute densities of atomic oxygen and nitrogen are determined through vacuum-ultraviolet absorption spectroscopy using the DESIRS beamline at the SOLEIL synchrotron coupled with a high resolution Fourier-transform spectrometer. The neutral-gas temperature is measured using nitrogen molecular optical emission spectroscopy. For a fixed applied-voltage amplitude (234?V), varying the pulse duty cycle from 10% to 100% at a fixed 10?kHz pulse frequency enables us to regulate the densities of atomic oxygen and nitrogen over the ranges of ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn006.gif] (0.18±0.03) ? ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn007.gif] (3.7±0.1)× 10^20 ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn008.gif] \rm m^-3 and ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn009.gif] (0.2±0.06) ? ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn010.gif] (4.4±0.8) × 10^19 ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn011.gif] \rm m^-3 , respectively. The corresponding 11?K increase in the neutral-gas temperature with increased duty cycle, up to a maximum of ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn012.gif] (314±4) K, is relatively small. This additional degree of control, achieved through regulation of the pulse duty cycle and time-averaged power, could be of particular interest for prospective biomedical applications

    The Concise Guide to PHARMACOLOGY 2015/16:Ligand-gated ion channels

    Get PDF
    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13349/full. Ligand-gated ion channels are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates
    corecore