122 research outputs found

    Characterization of arils juice and peel decoction of fifteen varieties of punica granatum l.: a focus on anthocyanins, ellagitannins and polysaccharides

    Get PDF
    Pomegranate is receiving renewed commercial and scientific interest, therefore a deeper knowledge of the chemical composition of the fruits of less studied varieties is required. In this work, juices from arils and decoctions from mesocarp plus exocarp were prepared from fifteen varieties. Samples were submitted to High Performance Liquid Chromatography—Diode Array Detector–Mass Spectrometry, spectrophotometric and colorimetric CIEL* a* b* analyses. Antioxidant, antiradical and metal chelating properties, inhibitory activity against tyrosinase and α-amylase enzymes were also evaluated. All varieties presented the same main phenols; anthocyanins and ellagitannins were widely variable among varieties, with the richest anthocyanin content in the juices from the Wonderful and Soft Seed Maule varieties (approx. 660 mg/L) and the highest ellagitannin content in the peel of the Black variety (approx. 133 mg/g dry matter). A good correlation was shown between the colour hue and the delphinidin/cyanidin ratio in juices (R 2= 0.885). Total polysaccharide yield ranged from 3% to 12% of the peels’ dry weight, with the highest content in the Black variety. Decoctions (24.44–118.50 mg KAE/g) showed better in vitro antioxidant properties and higher inhibitory capacity against tyrosinase than juices (not active-16.56 mg KAE/g); the inhibitory capacity against α-amylase was similar and quite potent for juices and decoctions. Knowledge about the chemical composition of different pomegranate varieties will allow for a more aware use of the different parts of the fruit

    Comparison between in vitro chemical and ex vivo biological assays to evaluate antioxidant capacity of botanical extracts

    Get PDF
    The anti-oxidative activity of plant-derived extracts is well-known and confers health-promoting effects on functional foods and food supplements. Aim of this work is to evaluate the capability of two different assays to predict the real biological antioxidant efficiency. At this purpose, extracts from five different plant-derived matrices and commercial purified phytochemicals were analyzed for their anti-oxidative properties by using well-standardized in vitro chemical method (TEAC) and an ex vivo biological assay. The biological assay, a cellular membrane system obtained from erythrocytes of healthy volunteers, is based on the capability of phytochemicals treatment to prevent membrane lipid peroxidation under oxidative stress by UV-B radiation. Plant extracts naturally rich in phenols with different structure and purified phytochemicals showed different in vitro and ex vivo antioxidant capacities. A high correlation between phenolic contents of the plant-derived extracts and their ability to prevent oxidative injuries in a biological system was found, thus underlying the relevance of this class of metabolites in preventing oxidative stress. On the other hand, a low correlation between the antioxidant capacities was shown between in vitro and ex vivo antioxidant assay. Moreover, data presented in this work show how food complex matrices are more effective in preventing oxidative damages at biological level than pure phytochemicals, even if for these latter, the antioxidant activity was generally higher than that observed for food complex matrices

    Paving the way to food grade analytical chemistry: use of a natural deep eutectic solvent to determine total hydroxytyrosol and tyrosol in extra virgin olive oils

    Get PDF
    Extra virgin olive oil (EVOO) is well known for containing relevant amounts of healthy phenolic compounds. The European Food Safety Authority (EFSA) allowed a health claim for labelling olive oils containing a minimum amount of hydroxytyrosol (OHTyr) and its derivatives, including tyrosol (Tyr). Therefore, harmonized and standardized analytical protocols are required in support of an effective application of the health claim. Acid hydrolysis performed after extraction and before chromatographic analysis has been shown to be a feasible approach. Nevertheless, other fast, green, and easy methods could be useful for on-site screening and monitoring applications. In the present research, a natural deep eutectic solvent (NADES) composed of lactic acid and glucose was used to perform a liquid/liquid extraction on EVOO samples, followed by UV-spectrophotometric analysis. The spectral features of the extracts were related with the content of total OHTyr and Tyr, determined by the acid hydrolysis method. The second derivative of spectra allowed focusing on three single wavelengths (i.e., 299 nm, 290 nm, and 282 nm) significantly related with total OHTyr, total Tyr, and their sum, respectively. In particular, the sum of OHTyr and Tyr could be determined with a root mean square error of prediction of 29.5 mg/kg, while the limits of quantitation and detection were respectively 11.8 and 4.9 mg/kg. The proposed method, therefore, represents an easy screening tool, with the use of a green, food-derived solvent, and could be considered as an attempt to pave the way for food grade analytical chemistry

    Daily consumption of a high-phenol extra-virgin olive oil reduces oxidative DNA damage in postmenopausal women

    Get PDF
    Extra-virgin olive oils (EVOO), high in phenolic compounds with antioxidant properties, could be partly responsible for the lower mortality and incidence of cancer and CVD in the Mediterranean region. The present study aims to measure oxidative DNA damage in healthy human subjects consuming olive oils with different concentrations of natural phenols. A randomised cross-over trial of high-phenol EVOO (high-EVOO; 592 mg total phenols/kg) v. low-phenol EVOO (low-EVOO; 147 mg/kg) was conducted in ten postmenopausal women in Florence. Subjects were asked to substitute all types of fat and oils habitually consumed with the study oil (50 g/d) for 8 weeks in each period. Oxidative DNA damage was measured by the comet assay in peripheral blood lymphocytes, collected at each visit during the study period. Urine samples over 24 h were collected to measure the excretion of the olive oil phenols. The average of the four measurements of oxidative DNA damage during treatment with high-EVOO was 30 % lower than the average during the low-EVOO treatment (P=0.02). Urinary excretion of hydroxytyrosol and its metabolite homovanillyl alcohol were significantly increased in subjects consuming high-EVOO. Despite the small sample size, the present study showed a reduction of DNA damage by consumption of an EVOO rich in phenols, particularly hydroxytyrosol

    Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid

    Get PDF
    BACKGROUND: Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. METHODS AND PRINCIPAL FINDINGS: RE was administered for 64 days to lean (fa/+) and obese (fa/fa) female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate) was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. CONCLUSIONS: Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption

    Acute metabolic actions of the major polyphenols in chamomile: an in vitro mechanistic study on their potential to attenuate postprandial hyperglycaemia

    Get PDF
    Transient hyperglycaemia is a risk factor for type 2 diabetes and endothelial dysfunction, especially in subjects with impaired glucose tolerance. Nutritional interventions and strategies for controlling postprandial overshoot of blood sugars are considered key in preventing progress to the disease state. We have identified apigenin-7-O-glucoside, apigenin, and (Z) and (E)-2-hydroxy-4-methoxycinnamic acid glucosides as the active (poly)phenols in Chamomile (Matricaria recutita) able to modulate carbohydrate digestion and absorption in vitro as assessed by inhibition of α-amylase and maltase activities. The latter two compounds previously mistakenly identified as ferulic acid hexosides were purified and characterised and studied for their contribution to the overall bioactivity of chamomile. Molecular docking studies revealed that apigenin and cinnamic acids present totally different poses in the active site of human α-amylase. In differentiated Caco-2/TC7 cell monolayers, apigenin-7-O-glucoside and apigenin strongly inhibited D-[U-14C]-glucose and D-[U-14C]-sucrose transport, and less effectively D-[U-14C]-fructose transport. Inhibition of D-[U-14C]- glucose transport by apigenin was stronger under Na+-depleted conditions, suggesting interaction with the GLUT2 transporter. Competitive binding studies with molecular probes indicate apigenin interacts primarily at the exofacial-binding site of GLUT2. Taken together, the individual components of Chamomile are promising agents for regulating carbohydrate digestion and sugar absorption at the site of the gastrointestinal tract

    Extensions and distortions of λ-fuzzy measures

    No full text
    We propose extensions and distorsion techniques to improve the flexibility of \u3bb-fuzzy measures. As for extensions, we suggest to use the family of Archimedean t-conorms as generators of the fuzzy measures. As for distortions, we propose the composition or patchwork of different generators. As an example of application, we show that in option pricing these techniques substantially improve the flexibility of the model to reproduce features observed from market data that only one Archimedean generator would not be able to represent

    A Model for Estimating the Liquidity Valuation Adjustment on OTC Derivatives

    No full text
    The paper proposes a methodology to compute the valuation adjustment that an intermediary would charge to a customer for an Over-The-Counter (OTC) derivative contract. The adjustment accounts for the market liquidity of the undelying asset of the contract. A binomial example illustrates how to determine the fee of an OTC contract based on information on the market slippage (the net supply curve of the underlying), the risk aversion of the customer and his liquidity constraint
    corecore