58 research outputs found

    Association between Fluoride Exposure and Blood pressure

    Get PDF
    Objectives: This study investigated whether fluoride was associated with an increased prevalence of high blood pressure (BP) among adolescents in the United States. Methods: The study sample consisted of 2015–2016 National Health and Nutrition Examination Survey participants aged 13–17 years. Independent-samples t-tests, Chi-square tests, and regression models were used to analyze the data. Results: A total of 814 participants met the study criteria. The findings showed that the proportion of patients with high levels of water or plasma fluoride in the high BP group was higher than that in the normal BP group. However, after adjusting for sociodemographic covariates, neither water nor plasma fluoride levels were significantly associated with a high BP. Conclusions: This study did not find an association between either water or plasma fluoride levels and high BP. Further study is needed to exclude a dose dependent effect at higher levels of fluoride

    A National Study Exploring the Association Between Fluoride Levels and Dental Fluorosis

    Get PDF
    Importance: While the effects of fluoride on health have been widely researched, fewer high-quality studies examine the association of fluoride levels in water and dental fluorosis. Objective: To investigate the association between fluoride exposure from drinking water and dental fluorosis. Design, setting, and participants: This cross-sectional study used the 2013-2014 and 2015-2016 National Health and Nutrition Examination Survey (NHANES) data (January 1, 2013, through December 31, 2016). NHANES uses a complex sampling technique to develop nationally representative sample estimates of the US population that consists of interviews and physical assessments. Children and adolescents aged 6 to 15 years were included because NHANES contains their data for all 3 forms of fluoride measures: plasma fluoride levels, water levels of fluoride, and dietary fluoride supplementation. Data were analyzed from January 1 to April 30, 2023. Exposures: Water and plasma fluoride levels were measured by laboratory personnel. Dietary fluoride supplement data were self-reported. Main outcomes and measures: The Dean's Fluorosis Index was used to evaluate fluorosis status for each tooth. The dental fluorosis severity value was based on the second most affected tooth. Independent variables included plasma and water fluoride concentrations and dietary fluoride supplementation. An independent samples t test was used to compare fluoride exposures between groups, and Pearson correlation assessed the association between plasma and water fluoride levels. To assess whether fluoride exposures were associated with dental fluorosis, logistic regression analyses were conducted. Results: There were 1543 participants in the 2013-2014 NHANES cycle (weighted proportion male, 51.9%; mean [SD] age, 11.0 [2.7] years) and 1452 in the 2015-2016 cycle (weighted proportion male, 52.6%; mean [SD] age, 11.1 [2.8] years). A weighted 87.3% exhibited some degree of fluorosis in the 2013-2014 cycle and 68.2% in the 2015-2016 cycle. Higher fluoride levels in water and plasma were significantly associated with higher odds of dental fluorosis (adjusted odds ratios, 2.378 [95% CI, 2.372-2.383] in the 2013-2014 cycle and 1.568 [95% CI, 1.564-1.571] in the 2015-2016 cycle). Conclusions and relevance: The findings of this cross-sectional study suggest that exposure to higher concentrations of fluoride in water and having higher plasma levels of fluoride were associated with a greater risk of dental fluorosis. Further research can help policy makers develop policies that balance substantial caries prevention with the risk of dental fluorosis.</p

    The Evolution of Respiratory Chain Complex I from a Smaller Last Common Ancestor Consisting of 11 Protein Subunits

    Get PDF
    The NADH:quinone oxidoreductase (complex I) has evolved from a combination of smaller functional building blocks. Chloroplasts and cyanobacteria contain a complex I-like enzyme having only 11 subunits. This enzyme lacks the N-module which harbors the NADH binding site and the flavin and iron–sulfur cluster prosthetic groups. A complex I-homologous enzyme found in some archaea contains an F420 dehydrogenase subunit denoted as FpoF rather than the N-module. In the present study, all currently available whole genome sequences were used to survey the occurrence of the different types of complex I in the different kingdoms of life. Notably, the 11-subunit version of complex I was found to be widely distributed, both in the archaeal and in the eubacterial kingdoms, whereas the 14-subunit classical complex I was found only in certain eubacterial phyla. The FpoF-containing complex I was present in Euryarchaeota but not in Crenarchaeota, which contained the 11-subunit complex I. The 11-subunit enzymes showed a primary sequence variability as great or greater than the full-size 14-subunit complex I, but differed distinctly from the membrane-bound hydrogenases. We conclude that this type of compact 11-subunit complex I is ancestral to all present-day complex I enzymes. No designated partner protein, acting as an electron delivery device, could be found for the compact version of complex I. We propose that the primordial complex I, and many of the present-day 11-subunit versions of it, operate without a designated partner protein but are capable of interaction with several different electron donor or acceptor proteins

    A multiplatform approach identifies miR-152-3p as a common epigenetically regulated onco-suppressor in prostate cancer targeting TMEM97

    Get PDF
    Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. MicroRNAs are globally downregulated in PCa, especially in poorly differentiated tumors. Nonetheless, the underlying mechanisms are still elusive. Herein, using combined analysis of microRNAs expression and genomewide DNA methylation, we aimed to identify epigenetically downregulated microRNAs in PCa.Research Center of Portuguese Oncology Institute of Porto (FB-GEBC-27 and 19-CI-IPOP-2016). JR-C and CSG are supported by FCT- Fundação para a Ciência e Tecnologia PhD fellowships (SFRH/BD/71293/2010 and SFRH/BD/92786/2013), SS is supported by a PhD fellowship IPO/ESTIMA-1 NORTE-01-0145-FEDER-000027, and IG is a research fellow from the strategic funding of FCT (PCT: PEst- UID/DTP/00776/2013 and COMPETE: POCI-01-0145-FEDER-006868). BMC is funded by FCT-Fundação para a Ciência e a Tecnologia (IF/00601/2012)info:eu-repo/semantics/publishedVersio

    TRPA1- FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p

    Get PDF
    YesRecent evidence suggests that the ion channel TRPA1 is implicated in lung adenocarcinoma (LUAD) where its role and mechanism of action remain unknown. We have previously established that the membrane receptor FGFR2 drives LUAD progression through aberrant protein-protein interactions mediated via its C-terminal proline rich motif. Here, we report that the N-terminal ankyrin repeats of TRPA1 directly bind to the C-terminal proline rich motif of FGFR2 inducing the constitutive activation of the receptor, thereby prompting LUAD progression and metastasis. Furthermore, we show that upon metastasis to the brain, TRPA1 gets depleted, an effect triggered by the transfer of TRPA1-targeting exosomal microRNA (miRNA-142-3p) from brain astrocytes to cancer cells. This downregulation, in turn, inhibits TRPA1-mediated activation of FGFR2 hindering the metastatic process. Our study reveals a direct binding event and characterizes the role of TRPA1 ankyrin repeats in regulating FGFR2-driven oncogenic process; a mechanism that is hindered by miRNA-142-3p.Faculty of Biological Sciences at the University of Leeds, Wellcome Trust Seed Award, Royal Society Research Grant RG150100, MR/K021303/1, Swedish Research Council (2014-3801) and the Medical Faculty at Lund University

    Calmodulin is responsible for Ca2+-dependent regulation of TRPA1 channels

    Get PDF
    TRPA1 is a Ca2+-permeable ion channel involved in many sensory disorders such as pain, itch and neuropathy. Notably, the function of TRPA1 depends on Ca2+, with low Ca2+ potentiating and high Ca2+ inactivating TRPA1. However, it remains unknown how Ca2+ exerts such contrasting effects. Here, we show that Ca2+ regulates TRPA1 through calmodulin, which binds to TRPA1 in a Ca2+-dependent manner. Calmodulin binding enhanced TRPA1 sensitivity and Ca2+-evoked potentiation of TRPA1 at low Ca2+, but inhibited TRPA1 sensitivity and promoted TRPA1 desensitization at high Ca2+. Ca2+-dependent potentiation and inactivation of TRPA1 were selectively prevented by disrupting the interaction of the carboxy-lobe of calmodulin with a calmodulin-binding domain in the C-terminus of TRPA1. Calmodulin is thus a critical Ca2+ sensor enabling TRPA1 to respond to diverse Ca2+ signals distinctly

    hTRPA1: Structural dynamics of pain sensor by FCS

    No full text
    International audienc
    corecore