65 research outputs found

    Laparoscopic versus open left lateral segmentectomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Laparoscopic liver surgery is becoming increasingly common. This cohort study was designed to directly compare perioperative outcomes of the left lateral segmentectomy via laparoscopic and open approach.</p> <p>Methods</p> <p>Between 2002 and 2006 43 left lateral segmentectomies were performed at King's College Hospital. Those excluded from analysis included previous liver resections, polycystic liver disease, liver cirrhosis and synchronous operations. Of 20 patients analysed, laparoscopic (n = 10) were compared with open left lateral segmentectomy (n = 10). Both groups had similar patient characteristics.</p> <p>Results</p> <p>Morbidity rates were similar with no wound or chest infection in either group. The conversion rate was 10% (1/10). There was no difference in operating time between the groups (median time 220 minutes versus 179 minutes, p = 0.315). Surgical margins for all lesions were clear. Less postoperative opiate analgesics were required in the laparoscopic group (median 2 days versus 5 days, p = 0.005). The median postoperative in-hospital stay was less in the laparoscopic group (6 days vs 9 days, p = 0.005). There was no mortality.</p> <p>Conclusion</p> <p>Laparoscopic left lateral segmentectomy is safe and feasible. Laparoscopic patients may benefit from requiring less postoperative opiate analgesia and a shorter post-operative in-hospital stay.</p

    Safety and efficacy of ApTOLL in patients with ischemic stroke undergoing endovascular treatment: a phase 1/2 randomized clinical trial

    Get PDF
    Clinical trial[Abstract] Importance: ApTOLL is a TLR4 antagonist with proven preclinical neuroprotective effect and a safe profile in healthy volunteers. Objective: To assess the safety and efficacy of ApTOLL in combination with endovascular treatment (EVT) for patients with ischemic stroke. Design, setting, and participants: This phase 1b/2a, double-blind, randomized, placebo-controlled study was conducted at 15 sites in Spain and France from 2020 to 2022. Participants included patients aged 18 to 90 years who had ischemic stroke due to large vessel occlusion and were seen within 6 hours after stroke onset; other criteria were an Alberta Stroke Program Early CT Score of 6 to 10, estimated infarct core volume on baseline computed tomography perfusion of 5 to 70 mL, and the intention to undergo EVT. During the study period, 4174 patients underwent EVT. Interventions: In phase 1b, 0.025, 0.05, 0.1, or 0.2 mg/kg of ApTOLL or placebo; in phase 2a, 0.05 or 0.2 mg/kg of ApTOLL or placebo; and in both phases, treatment with EVT and intravenous thrombolysis if indicated. Main outcomes and measures: The primary end point was the safety of ApTOLL based on death, symptomatic intracranial hemorrhage (sICH), malignant stroke, and recurrent stroke. Secondary efficacy end points included final infarct volume (via MRI at 72 hours), NIHSS score at 72 hours, and disability at 90 days (modified Rankin Scale [mRS] score). Results: In phase Ib, 32 patients were allocated evenly to the 4 dose groups. After phase 1b was completed with no safety concerns, 2 doses were selected for phase 2a; these 119 patients were randomized to receive ApTOLL, 0.05 mg/kg (n = 36); ApTOLL, 0.2 mg/kg (n = 36), or placebo (n = 47) in a 1:1:√2 ratio. The pooled population of 139 patients had a mean (SD) age of 70 (12) years, 81 patients (58%) were male, and 58 (42%) were female. The primary end point occurred in 16 of 55 patients (29%) receiving placebo (10 deaths [18.2%], 4 sICH [7.3%], 4 malignant strokes [7.3%], and 2 recurrent strokes [3.6%]); in 15 of 42 patients (36%) receiving ApTOLL, 0.05 mg/kg (11 deaths [26.2%], 3 sICH [7.2%], 2 malignant strokes [4.8%], and 2 recurrent strokes [4.8%]); and in 6 of 42 patients (14%) receiving ApTOLL, 0.2 mg/kg (2 deaths [4.8%], 2 sICH [4.8%], and 3 recurrent strokes [7.1%]). ApTOLL, 0.2 mg/kg, was associated with lower NIHSS score at 72 hours (mean difference log-transformed vs placebo, -45%; 95% CI, -67% to -10%), smaller final infarct volume (mean difference log-transformed vs placebo, -42%; 95% CI, -66% to 1%), and lower degrees of disability at 90 days (common odds ratio for a better outcome vs placebo, 2.44; 95% CI, 1.76 to 5.00). Conclusions and relevance: In acute ischemic stroke, 0.2 mg/kg of ApTOLL administered within 6 hours of onset in combination with EVT was safe and associated with a potential meaningful clinical effect, reducing mortality and disability at 90 days compared with placebo. These preliminary findings await confirmation from larger pivotal trials.This study was sponsored by aptaTargets, Madrid, Spain, and cofunded by grants from the Spanish Ministry of Science, Innovation and Universities (RTC-2017-6651-1 and RTC-2019-006795-1).España. Ministerio de Ciencia, Innovación e Universidades; RTC-2017-6651-1España. Ministeriod e Ciencia, Innovación e Universidades; RTC-2019-006795-

    Multi-ancestry GWAS reveals excitotoxicity associated with outcome after ischaemic stroke

    Get PDF
    During the first hours after stroke onset neurological deficits can be highly unstable: some patients rapidly improve, while others deteriorate. This early neurological instability has a major impact on long-term outcome. Here, we aimed to determine the genetic architecture of early neurological instability measured by the difference between NIH stroke scale (NIHSS) within six hours of stroke onset and NIHSS at 24 h (ΔNIHSS). A total of 5,876 individuals from seven countries (Spain, Finland, Poland, United States, Costa Rica, Mexico and Korea) were studied using a multi-ancestry meta-analyses. We found that 8.7% of ΔNIHSS variance was explained by common genetic variations, and also that early neurological instability has a different genetic architecture than that of stroke risk. Eight loci (1p21.1, 1q42.2, 2p25.1, 2q31.2, 2q33.3, 5q33.2, 7p21.2,and 13q31.1) were genome-wide significant and explained 1.8% of the variability suggesting that additional variants influence early change in neurological deficits. We used functional genomics and bioinformatic annotation to identify the genes driving the association from each loci. eQTL mapping and SMR indicate that ADAM23 (log Bayes Factor (LBF) = 5.41) was driving the association for 2q33.3. Gene based analyses suggested that GRIA1 (LBF = 5.19), which is predominantly expressed in brain, is the gene driving the association for the 5q33.2 locus. These analyses also nominated GNPAT (LBF = 7.64)ABCB5 (LBF = 5.97) for the 1p21.1 and 7p21.1 loci. Human brain single nuclei RNA-seq indicates that the gene expression of ADAM23 and GRIA1 is enriched in neurons. ADAM23, a pre-synaptic protein, and GRIA1, a protein subunit of the AMPA receptor, are part of a synaptic protein complex that modulates neuronal excitability. These data provides the first genetic evidence in humans that excitotoxicity may contribute to early neurological instability after acute ischemic stroke

    RP11-362K2.2:RP11-767I20.1 Genetic Variation Is Associated with Post-Reperfusion Therapy Parenchymal Hematoma. A GWAS Meta-Analysis

    Get PDF
    Stroke is one of the most common causes of death and disability. Reperfusion therapies are the only treatment available during the acute phase of stroke. Due to recent clinical trials, these therapies may increase their frequency of use by extending the time-window administration, which may lead to an increase in complications such as hemorrhagic transformation, with parenchymal hematoma (PH) being the more severe subtype, associated with higher mortality and disability rates. Our aim was to find genetic risk factors associated with PH, as that could provide molecular targets/pathways for their prevention/treatment and study its genetic correlations to find traits sharing genetic background. We performed a GWAS and meta-analysis, following standard quality controls and association analysis (fastGWAS), adjusting age, NIHSS, and principal components. FUMA was used to annotate, prioritize, visualize, and interpret the meta-analysis results. The total number of patients in the meta-analysis was 2034 (216 cases and 1818 controls). We found rs79770152 having a genome-wide significant association (beta 0.09, p-value 3.90 × 10-8) located in the RP11-362K2.2:RP11-767I20.1 gene and a suggestive variant (rs13297983: beta 0.07, p-value 6.10 × 10-8) located in PCSK5 associated with PH occurrence. The genetic correlation showed a shared genetic background of PH with Alzheimer's disease and white matter hyperintensities. In addition, genes containing the ten most significant associations have been related to aggregated amyloid-β, tau protein, white matter microstructure, inflammation, and matrix metalloproteinases

    Safety and efficacy of GABAA α5 antagonist S44819 in patients with ischaemic stroke: a multicentre, double-blind, randomised, placebo-controlled trial

    Get PDF
    Background: S44819, a selective GABAA α5 receptor antagonist, reduces tonic post-ischaemic inhibition of the peri-infarct cortex. S44819 improved stroke recovery in rodents and increased cortical excitability in a transcranial magnetic stimulation study in healthy volunteers. The Randomized Efficacy and Safety Trial of Oral GABAA α5 antagonist S44819 after Recent ischemic Event (RESTORE BRAIN) aimed to evaluate the safety and efficacy of S44819 for enhancing clinical recovery of patients with ischaemic stroke. Methods: RESTORE BRAIN was an international, randomised, double-blind, parallel-group, placebo-controlled, multicentre phase 2 trial that evaluated the safety and efficacy of oral S44189 in patients with recent ischaemic stroke. The study was done in specialised stroke units in 92 actively recruiting centres in 14 countries: ten were European countries (Belgium, Czech Republic, France, Germany, Hungary, Italy, Netherlands, Poland, Spain, and the UK) and four were non-European countries (Australia, Brazil, Canada, and South Korea). Patients aged 18–85 years with acute ischaemic stroke involving cerebral cortex (National Institute of Health Stroke Scale [NIHSS] score 7–20) without previous disability were eligible for inclusion. Participants were randomly assigned to receive 150 mg S44819 twice a day, 300 mg S44819 twice a day, or placebo twice a day by a balanced, non-adaptive randomisation method with a 1:1:1 ratio. Treatment randomisation and allocation were centralised via the interactive web response system using computer-generated random sequences with a block size of 3. Blinding of treatment was achieved by identical appearance and taste of all sachets. Patients, investigators and individuals involved in the analysis of the trial were masked to group assignment. The primary endpoint was the modified Rankin Scale (mRS) score 90 days from onset of treatment, evaluated by shift analysis (predefined main analysis) or by dichotomised analyses using 0–1 versus 2–6 and 0–2 versus 3–6 cutoffs (predefined secondary analysis). Secondary endpoints were the effects of S44819 on the NIHSS and Montreal Cognitive Assessment (MoCA) scores, time needed to complete parts A and B of the Trail Making Test, and the Barthel index. Efficacy analyses were done on all patients who received at least one dose of treatment and had at least one mRS score taken after day 5 (specifically, on or after day 30). Safety was compared across treatment groups for all patients who received at least one dose of treatment. The study was registered at ClinicalTrials.gov, NCT02877615. Findings: Between Dec 19, 2016, and Nov 16, 2018, 585 patients were enrolled in the study. Of these, 197 (34%) were randomly assigned to receive 150 mg S44819 twice a day, 195 (33%) to receive 300 mg S44819 twice a day, and 193 (33%) to receive placebo twice a day. 189 (96%) of 197 patients in the 150 mg S44819 group, 188 (96%) of 195 patients in the 300 mg S44819 group, and 191 (99%) patients in the placebo group received at least one dose of treatment and had at least one mRS score taken after day 5, and were included in efficacy analyses. 195 (99%) of 197 patients in the 150 mg S44819 group, 194 (99%) of 195 patients in the 300 mg S44819 group, and 193 (100%) patients in the placebo group received at least one dose of treatment, and were included in safety analyses. The primary endpoint of mRS at day 90 did not differ between each of the two S44819 groups and the placebo group (OR 0·91 [95% CI 0·64–1·31]; p=0·80 for 150 mg S44819 compared with placebo and OR 1·17 [95% CI 0·81–1·67]; p=0·80 for 300 mg S44819 compared with placebo). Likewise, dichotomised mRS scores at day 90 (mRS 0–2 vs 3–6 or mRS 0–1 vs 2–6) did not differ between groups. Secondary endpoints did not reveal any significant group differences. The median NIHSS score at day 90 did not differ between groups (4 [IQR 2–8] in 150 mg S44819 group, 4 [2–7] in 300 mg S44819 group, and 4 [2–6] in placebo group), nor did the number of patients at day 90 with an NIHSS score of up to 5 (95 [61%] of 156 in 150 mg S44819 group, 106 [66%] of 161 in 300 mg S44819 group, and 104 [66%] of 157 in placebo group) versus more than 5 (61 [39%] in 150 mg S44819 group, 55 [34%] in 300 mg S44819 group, and 53 [34%] in placebo group). Likewise, the median MoCA score (22·0 [IQR 17·0–26·0] in 150 mg S44819 group, 23·0 [19·0–26·5] in 300 mg S44819 group, and 22·0 [17·0–26·0] in placebo group), time needed to complete parts A (50 s [IQR 42–68] in 150 mg S44819 group, 49 s [36–63] in 300 mg S44819 group, and 50 s [38–68] in placebo group) and B (107 s [81–144] in 150 mg S44819 group, 121 s [76–159] in 300 mg S44819 group, and 130 s [86–175] in placebo group) of the Trail Making Test, and the Barthel index (90 [IQR 60–100] in 150 mg S44819 group, 90 [70–100] in 300 mg S44819 group, and 90 [70–100] in placebo group) were similar in all groups. Number and type of adverse events were similar between the three groups. There were no drug-related adverse events and no drug-related deaths. Interpretation: There was no evidence that S44819 improved clinical outcome in patients after ischaemic stroke, and thus S44819 cannot be recommended for stroke therapy. The concept of tonic inhibition after stroke should be re-evaluated in humans. Funding: Servier

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality

    Get PDF
    Background and purpose: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. Methods: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). Results: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P&lt;0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P&lt;0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. Conclusions: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT

    A Multitrait Genetic Study of Hemostatic Factors and Hemorrhagic Transformation after Stroke Treatment

    Get PDF
    BACKGROUND: Thrombolytic recombinant tissue plasminogen activator (r-tPA) treatment is the only pharmacologic intervention available in the ischemic stroke acute phase. This treatment is associated with an increased risk of intracerebral hemorrhages, known as hemorrhagic transformations (HTs), which worsen the patient\u27s prognosis. OBJECTIVES: to investigate the association between genetically determined natural hemostatic factors\u27 levels and increased risk of HT after r-tPA treatment. METHODS: Using data from genome-wide association studies on the risk of HT after r-tPA treatment and data on 7 hemostatic factors (factor [F]VII, FVIII, von Willebrand factor [VWF], FXI, fibrinogen, plasminogen activator inhibitor-1, and tissue plasminogen activator), we performed local and global genetic correlation estimation multitrait analyses and colocalization and 2-sample Mendelian randomization analyses between hemostatic factors and HT. RESULTS: Local correlations identified a genomic region on chromosome 16 with shared covariance: fibrinogen-HT, P = 2.45 × 10 CONCLUSION: We identified 4 shared loci between hemostatic factors and HT after r-tPA treatment, suggesting common regulatory mechanisms between fibrinogen and VWF levels and HT. Further research to determine a possible mediating effect of fibrinogen on HT risk is needed

    A multitrait genetic study of hemostatic factors and hemorrhagic transformation after stroke treatment

    Get PDF
    [Background] Thrombolytic recombinant tissue plasminogen activator (r-tPA) treatment is the only pharmacologic intervention available in the ischemic stroke acute phase. This treatment is associated with an increased risk of intracerebral hemorrhages, known as hemorrhagic transformations (HTs), which worsen the patient’s prognosis.[Objectives] To investigate the association between genetically determined natural hemostatic factors’ levels and increased risk of HT after r-tPA treatment.[Methods] Using data from genome-wide association studies on the risk of HT after r-tPA treatment and data on 7 hemostatic factors (factor [F]VII, FVIII, von Willebrand factor [VWF], FXI, fibrinogen, plasminogen activator inhibitor-1, and tissue plasminogen activator), we performed local and global genetic correlation estimation multitrait analyses and colocalization and 2-sample Mendelian randomization analyses between hemostatic factors and HT.[Results] Local correlations identified a genomic region on chromosome 16 with shared covariance: fibrinogen-HT, P = 2.45 × 10−11. Multitrait analysis between fibrinogen-HT revealed 3 loci that simultaneously regulate circulating levels of fibrinogen and risk of HT: rs56026866 (PLXND1), P = 8.80 × 10−10; rs1421067 (CHD9), P = 1.81 × 10−14; and rs34780449, near ROBO1 gene, P = 1.64 × 10−8. Multitrait analysis between VWF-HT showed a novel common association regulating VWF and risk of HT after r-tPA at rs10942300 (ZNF366), P = 1.81 × 10−14. Mendelian randomization analysis did not find significant causal associations, although a nominal association was observed for FXI-HT (inverse-variance weighted estimate [SE], 0.07 [−0.29 to 0.00]; odds ratio, 0.87; 95% CI, 0.75-1.00; raw P = .05).[Conclusion] We identified 4 shared loci between hemostatic factors and HT after r-tPA treatment, suggesting common regulatory mechanisms between fibrinogen and VWF levels and HT. Further research to determine a possible mediating effect of fibrinogen on HT risk is needed.This study is supported in part by the National Heart, Lung, and Blood Institute grants HL134894, HL139553, and HL141291. G.T.-S. is supported by the Pla Estratègic de Recerca i Innovació en Salut grant from the Catalan Department of Health for junior research personnel (SLT017/20/000100). M.S.-L. is supported by a Miguel Servet contract from the Instituto de Salud Carlos III (ISCIII) Spanish Health Institute (CPII22/00007) and cofinanced by the European Social Fund. E.M. is supported by a Río Hortega Contract (CM18/00198) from the ISCIII. J.C.-M. is supported by an Agència de Gestió d’Ajuts Universitaris i de Recerca Contract (FI_DGR 2020, grant number 2020FI_B1 00157) cofinanced by the European Social Fund. C.G.-F. is supported by a Sara Borrell Contract (CD20/00043) from ISCIII and Fondo Europeo de Desarrollo Regional (ISCIII- FEDER). M.L. is supported by a Contratos Predoctorales de Formación en Investigación en Salud Contract from the ISCIII (FI19/00309).Peer reviewe

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality.

    Get PDF
    BACKGROUND AND PURPOSE: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. METHODS: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). RESULTS: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. CONCLUSIONS: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT
    corecore