156 research outputs found

    Can scalars have asymptotic symmetries?

    Get PDF
    Recently it has been understood that certain soft factorization theorems for scattering amplitudes can be written as Ward identities of new asymptotic symmetries. This relationship has been established for soft particles with spins s>0, most notably for soft gravitons and photons. Here we study the remaining case of soft scalars. We show that a class of Yukawa-type theories, where a massless scalar couples to massive particles, have an infinite number of conserved charges. This raises the question as to whether one can associate asymptotic symmetries to scalars

    Crossing beyond scattering amplitudes

    Full text link
    We find that different asymptotic measurements in quantum field theory can be related to one another through new versions of crossing symmetry. Assuming analyticity, we conjecture generalized crossing relations for multi-particle processes and the corresponding paths of analytic continuation. We prove them to all multiplicity at tree-level in quantum field theory and string theory. We illustrate how to practically perform analytic continuations on loop-level examples using different methods, including unitarity cuts and differential equations. We study the extent to which anomalous thresholds away from the usual physical region can cause an analytic obstruction to crossing when massless particles are involved. In an appendix, we review and streamline historical proofs of four-particle crossing symmetry in gapped theories.Comment: 108 page

    First results of material charging in the space environment

    Get PDF
    A satellite experiment, designed to measure potential charging of typical thermal control materials at near geosynchronous altitude, was flown as part of the SCATHA program. Direct observations of charging of typical satellite materials in a natural charging event ( 5 keV) are presented. The results show some features which differ significantly from previous laboratory simulations of the environment

    The S Matrix of 6D Super Yang-Mills and Maximal Supergravity from Rational Maps

    Get PDF
    We present new formulas for nn-particle tree-level scattering amplitudes of six-dimensional N=(1,1)\mathcal{N}=(1,1) super Yang-Mills (SYM) and N=(2,2)\mathcal{N}=(2,2) supergravity (SUGRA). They are written as integrals over the moduli space of certain rational maps localized on the (n−3)!(n-3)! solutions of the scattering equations. Due to the properties of spinor-helicity variables in six dimensions, the even-nn and odd-nn formulas are quite different and have to be treated separately. We first propose a manifestly supersymmetric expression for the even-nn amplitudes of N=(1,1)\mathcal{N}=(1,1) SYM theory and perform various consistency checks. By considering soft-gluon limits of the even-nn amplitudes, we deduce the form of the rational maps and the integrand for nn odd. The odd-nn formulas obtained in this way have a new redundancy that is intertwined with the usual SL(2,C)\text{SL}(2, \mathbb{C}) invariance on the Riemann sphere. We also propose an alternative form of the formulas, analogous to the Witten-RSV formulation, and explore its relationship with the symplectic (or Lagrangian) Grassmannian. Since the amplitudes are formulated in a way that manifests double-copy properties, formulas for the six-dimensional N=(2,2)\mathcal{N}=(2,2) SUGRA amplitudes follow. These six-dimensional results allow us to deduce new formulas for five-dimensional SYM and SUGRA amplitudes, as well as massive amplitudes of four-dimensional N=4\mathcal{N}=4 SYM on the Coulomb branch.Comment: 71+23 pages. v2: minor corrections, references added, matches published JHEP versio

    Analysis of the Thermal and Magnetic Properties of Amorphous Fe 61Co10Zr2.5Hf2.5Me2W2B20 (Where Me = Mo, Nb, Ni Or Y) Ribbons

    Get PDF
    The paper presents the results of structural and magnetic properties and thermal stability for a group of functional materials based on Fe61Co10Zr2.5Hf2.5Me2W2B20 (where Me = Mo, Nb, Ni or Y). Samples were obtained in the form of ribbons using melt-spinning method. The X-ray diffraction patterns of investigated samples confirmed their amorphous structure. Based on the analysis of DSC curves characteristic temperatures: glass forming temperature (Tg), crystallization temperature (Tx) and temperature range of the supercooled liquid ΔTx were determined. Small addition of transition metals elements has strong influence on magnetic and thermal parameters of studied materials. The comprehensive studies revealed that in terms of magnetic properties the Ni-addition resulted in highest reduction in coercivity and anisotropy field

    Characterization of crop residues from false banana/Ensete ventricosum/in Ethiopia in view of a full-resource valorization

    Get PDF
    Research ArticleFalse banana /Ensete ventricosum [Welw.] Cheesman/ is exploited as a food crop in Ethiopia where it represents an important staple food. The plant is harvested and large amounts of biomass residues are originated, mainly from the pseudo stem (i.e., fiber bundles obtained from the leaf sheaths after being scrapped to produce starchy food) and the inflorescence stalk. These materials were studied in relation to their summative chemical composition, composition of lignin, lipophilic and polar extracts. Moreover, their structural characteristics, in view of their valorization, were scrutinized. The analytical studies were performed with the aid of FTIR, GC/MS, Py-GC/MS and SEM. The fiber bundles are aggregates of mainly long and slender fibers with low ash, extractives and lignin contents (3.8%. 4.4% and 10.5% respectively) and high holocellulose and α-cellulose contents (87.5% and 59.6% respectively). The hemicelluloses in the fibers are mostly highly acetylated xylans and the lignin is of the H-type (H:G:S, 1:0.7:0.8). This lignin composition is in line with the FTIR peaks at 1670 cm-1 and 1250 cm-1.The inflorescence stalk has high ash content (12.3% in the main stalk and 24.6% in fines) with a major proportion of potassium, high extractives (25.9%), and low lignin and α-cellulose contents (5.8% and 17.9% respectively). The stalk includes numerous starch granules in the cellular structure with the predominant presence of parenchyma. The potential valorization routes for these materials are clearly different. The fiber bundles could be used as a fiber source for paper pulp production with the possibility of a prior hemicelluloses removal while the inflorescence stalk has nutritional value for food and fodder. Furthermore, it can also be used for sugar fermentation productsinfo:eu-repo/semantics/publishedVersio

    20 questions on Adaptive Dynamics

    Get PDF
    Abstract Adaptive Dynamics is an approach to studying evolutionary change when fitness is density or frequency dependent. Modern papers identifying themselves as using this approach first appeared in the 1990s, and have greatly increased up to the present. However, because of the rather technical nature of many of the papers, the approach is not widely known or understood by evolutionary biologists. In this review we aim to remedy this situation by outlining the methodology and then examining its strengths and weaknesses. We carry this out by posing and answering 20 key questions on Adaptive Dynamics. We conclude that Adaptive Dynamics provides a set of useful approximations for studying various evolutionary questions. However, as with any approximate method, conclusions based on Adaptive Dynamics are valid only under some restrictions that we discuss

    Niche Partitioning Along an Environmental Gradient

    Full text link

    Statistical Inference for Valued-Edge Networks: Generalized Exponential Random Graph Models

    Get PDF
    Across the sciences, the statistical analysis of networks is central to the production of knowledge on relational phenomena. Because of their ability to model the structural generation of networks, exponential random graph models are a ubiquitous means of analysis. However, they are limited by an inability to model networks with valued edges. We solve this problem by introducing a class of generalized exponential random graph models capable of modeling networks whose edges are valued, thus greatly expanding the scope of networks applied researchers can subject to statistical analysis
    • …
    corecore