61 research outputs found

    Checkpoints are blind to replication restart and recombination intermediates that result in gross chromosomal rearrangements

    Get PDF
    Replication fork inactivation can be overcome by homologous recombination, but this can cause gross chromosomal rearrangements that subsequently missegregate at mitosis, driving further chromosome instability. It is unclear when the chromosome rearrangements are generated and whether individual replication problems or the resulting recombination intermediates delay the cell cycle. Here we have investigated checkpoint activation during HR-dependent replication restart using a site-specific replication fork-arrest system. Analysis during a single cell cycle shows that HR-dependent replication intermediates arise in S phase, shortly after replication arrest, and are resolved into acentric and dicentric chromosomes in G2. Despite this, cells progress into mitosis without delay. Neither the DNA damage nor the intra-S phase checkpoints are activated in the first cell cycle, demonstrating that these checkpoints are blind to replication and recombination intermediates as well as to rearranged chromosomes. The dicentrics form anaphase bridges that subsequently break, inducing checkpoint activation in the second cell cycle

    ATAD5 promotes replication restart by regulating RAD51 and PCNA in response to replication stress

    Get PDF
    Maintaining stability of replication forks is important for genomic integrity. However, it is not clear how replisome proteins contribute to fork stability under replication stress. Here, we report that ATAD5, a PCNA unloader, plays multiple functions at stalled forks including promoting its restart. ATAD5 depletion increases genomic instability upon hydroxyurea treatment in cultured cells and mice. ATAD5 recruits RAD51 to stalled forks in an ATR kinase-dependent manner by hydroxyurea-enhanced protein-protein interactions and timely removes PCNA from stalled forks for RAD51 recruitment. Consistent with the role of RAD51 in fork regression, ATAD5 depletion inhibits slowdown of fork progression and native 5-bromo-2??-deoxyuridine signal induced by hydroxyurea. Single-molecule FRET showed that PCNA itself acts as a mechanical barrier to fork regression. Consequently, DNA breaks required for fork restart are reduced by ATAD5 depletion. Collectively, our results suggest an important role of ATAD5 in maintaining genome integrity during replication stress

    Strong Association of 677 C>T Substitution in the MTHFR Gene with Male Infertility - A Study on an Indian Population and a Meta-Analysis

    Get PDF
    Methylenetetrahydrofolate reductase (MTHFR) is an important enzyme of folate and methionine metabolism, making it crucial for DNA synthesis and methylation. The objective of this study was to analyze MTHFR gene 677C>T polymorphism in infertile male individuals from North India, followed by a meta-analysis on our data and published studies.We undertook genotyping on a total of 837 individuals including well characterized infertile (N = 522) and confirmed fertile (N = 315) individuals. The SNP was typed by direct DNA sequencing. Chi square test was done for statistical analysis. Published studies were searched using appropriate keywords. Source of data collection for meta-analysis included 'Pubmed', 'Ovid' and 'Google Scholar'. Those studies analyzing 677C>T polymorphism in male infertility and presenting all relevant data were included in meta-analysis. The genotype data for infertile subjects and fertile controls was extracted from each study. Chi square test was done to obtain odds ratio (OR) and p-value. Meta-analysis was performed using Comprehensive Meta-analysis software (Version 2). The frequency of mutant (T) allele (p = 0.0025) and genotypes (CT+TT) (p = 0.0187) was significantly higher in infertile individuals in comparison to fertile controls in our case-control study. The overall summary estimate (OR) for allele and genotype meta-analysis were 1.304 (p = 0.000), 1.310 (p = 0.000), respectively, establishing significant association of 677C>T polymorphism with male infertility.677C>T substitution associated strongly with male infertility in Indian population. Allele and genotype meta-analysis also supported its strong correlation with male infertility, thus establishing it as a risk factor

    Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability

    Get PDF
    Correct transcription is crucial for life. However, DNA damage severely impedes elongating RNA polymerase II, causing transcription inhibition and transcription-replication conflicts. Cells are equipped with intricate mechanisms to counteract the severe consequence of these transcription-blocking lesions. However, the exact mechanism and factors involved remain largely unknown. Here, using a genome-wide CRISPR-Cas9 screen, we identified the elongation factor ELOF1 as an important factor in the transcription stress response following DNA damage. We show that ELOF1 has an evolutionarily conserved role in transcription-coupled nucleotide excision repair (TC-NER), where it promotes recruitment of the TC-NER factors UVSSA and TFIIH to efficiently repair transcription-blocking lesions and resume transcription. Additionally, ELOF1 modulates transcription to protect cells against transcription-mediated replication stress, thereby preserving genome stability. Thus, ELOF1 protects the transcription machinery from DNA damage via two distinct mechanisms

    Mitophagy plays a central role in mitochondrial ageing

    Get PDF

    Epigenetic remodelling and dysregulation of DLGAP4 is linked with early-onset cerebellar ataxia

    No full text
    Genome instability, epigenetic remodelling and structural chromosomal rearrangements are hallmarks of cancer. However, the coordinated epigenetic effects of constitutional chromosomal rearrangements that disrupt genes associated with congenital neurodevelopmental diseases are poorly understood. To understand the genetic-epigenetic interplay at breakpoints of chromosomal translocations disrupting CG-rich loci, we quantified epigenetic modifications at DLGAP4 (SAPAP4), a key post-synaptic density 95 (PSD95) associated gene, truncated by the chromosome translocation t(8;20)(p12;q11.23), co-segregating with cerebellar ataxia in a five-generation family. We report significant epigenetic remodelling of the DLGAP4 locus triggered by the t(8;20)(p12;q11.23) translocation and leading to dysregulation of DLGAP4 expression in affected carriers. Disruption of DLGAP4 results in monoallelic hypermethylation of the truncated DLGAP4 promoter CpG island. This induced hypermethylation is maintained in somatic cells of carriers across several generations in a t(8;20) dependent-manner however, is erased in the germ cells of the translocation carriers. Subsequently, chromatin remodelling of the locus-perturbed monoallelic expression of DLGAP4 mRNAs and non-coding RNAs in haploid cells having the translocation. Our results provide new mechanistic insight into the way a balanced chromosomal rearrangement associated with a neurodevelopmental disorder perturbs allele-specific epigenetic mechanisms at breakpoints leading to the deregulation of the truncated locus
    corecore