66 research outputs found

    Mal/SRF Is Dispensable for Cell Proliferation in Drosophila

    Get PDF
    The Mal/SRF transcription factor is regulated by the level of G-actin in cells and has important roles in cell migration and other actin-dependent processes in Drosophila. A recent report suggests that Mal/SRF and an upstream regulator, Pico, are required for cell proliferation and tissue growth in Drosophila. I find otherwise. Mutation of Mal or SRF does not affect cell proliferation in the fly wing. Furthermore, I cannot reproduce the reported effects of Pico RNAi or Pico overexpression on body size. Nevertheless, I can confirm that overexpression of Pico or Mal causes tissue overgrowth specifically in the fly wing - where SRF is most highly expressed. My results indicate that Mal/SRF can promote tissue growth when abnormally active, but is not normally required for tissue growth during development

    ELK1 Uses Different DNA Binding Modes to Regulate Functionally Distinct Classes of Target Genes

    Get PDF
    Eukaryotic transcription factors are grouped into families and, due to their similar DNA binding domains, often have the potential to bind to the same genomic regions. This can lead to redundancy at the level of DNA binding, and mechanisms are required to generate specific functional outcomes that enable distinct gene expression programmes to be controlled by a particular transcription factor. Here we used ChIP–seq to uncover two distinct binding modes for the ETS transcription factor ELK1. In one mode, other ETS transcription factors can bind regulatory regions in a redundant fashion; in the second, ELK1 binds in a unique fashion to another set of genomic targets. Each binding mode is associated with different binding site features and also distinct regulatory outcomes. Furthermore, the type of binding mode also determines the control of functionally distinct subclasses of genes and hence the phenotypic response elicited. This is demonstrated for the unique binding mode where a novel role for ELK1 in controlling cell migration is revealed. We have therefore uncovered an unexpected link between the type of binding mode employed by a transcription factor, the subsequent gene regulatory mechanisms used, and the functional categories of target genes controlled

    MicroRNA Let-7f Inhibits Tumor Invasion and Metastasis by Targeting MYH9 in Human Gastric Cancer

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are important regulators that play key roles in tumorigenesis and tumor progression. A previous report has shown that let-7 family members can act as tumor suppressors in many cancers. Through miRNA array, we found that let-7f was downregulated in the highly metastatic potential gastric cancer cell lines GC9811-P and SGC7901-M, when compared with their parental cell lines, GC9811 and SGC7901-NM; however, the mechanism was not clear. In this study, we investigate whether let-7f acts as a tumor suppressor to inhibit invasion and metastasis in gastric cancers. METHODOLOGY/PRINCIPAL: Real-time PCR showed decreased levels of let-7f expression in metastatic gastric cancer tissues and cell lines that are potentially highly metastatic. Cell invasion and migration were significantly impaired in GC9811-P and SGC7901-M cell lines after transfection with let-7f-mimics. Nude mice with xenograft models of gastric cancer confirmed that let-7f could inhibit gastric cancer metastasis in vivo after transfection by the lentivirus pGCsil-GFP- let-7f. Luciferase reporter assays demonstrated that let-7f directly binds to the 3'UTR of MYH9, which codes for myosin IIA, and real-time PCR and Western blotting further indicated that let-7f downregulated the expression of myosin IIA at the mRNA and protein levels. CONCLUSIONS/SIGNIFICANCE: Our study demonstrated that overexpression of let-7f in gastric cancer could inhibit invasion and migration of gastric cancer cells through directly targeting the tumor metastasis-associated gene MYH9. These data suggest that let-7f may be a novel therapeutic candidate for gastric cancer, given its ability to reduce cell invasion and metastasis

    Acetonic Extract of Buxus sempervirens Induces Cell Cycle Arrest, Apoptosis and Autophagy in Breast Cancer Cells

    Get PDF
    Plants are an invaluable source of potential new anti-cancer drugs. Here, we investigated the cytotoxic activity of the acetonic extract of Buxus sempervirens on five breast cancer cell lines, MCF7, MCF10CA1a and T47D, three aggressive triple positive breast cancer cell lines, and BT-20 and MDA-MB-435, which are triple negative breast cancer cell lines. As a control, MCF10A, a spontaneously immortalized but non-tumoral cell line has been used. The acetonic extract of Buxus sempervirens showed cytotoxic activity towards all the five studied breast cancer cell lines with an IC50 ranging from 7.74 µg/ml to 12.5 µg/ml. Most importantly, the plant extract was less toxic towards MCF10A with an IC50 of 19.24 µg/ml. Fluorescence-activated cell sorting (FACS) analysis showed that the plant extract induced cell death and cell cycle arrest in G0/G1 phase in MCF7, T47D, MCF10CA1a and BT-20 cell lines, concomitant to cyclin D1 downregulation. Application of MCF7 and MCF10CA1a respective IC50 did not show such effects on the control cell line MCF10A. Propidium iodide/Annexin V double staining revealed a pre-apoptotic cell population with extract-treated MCF10CA1a, T47D and BT-20 cells. Transmission electron microscopy analyses indicated the occurrence of autophagy in MCF7 and MCF10CA1a cell lines. Immunofluorescence and Western blot assays confirmed the processing of microtubule-associated protein LC3 in the treated cancer cells. Moreover, we have demonstrated the upregulation of Beclin-1 in these cell lines and downregulation of Survivin and p21. Also, Caspase-3 detection in treated BT-20 and T47D confirmed the occurrence of apoptosis in these cells. Our findings indicate that Buxus sempervirens extract exhibit promising anti-cancer activity by triggering both autophagic cell death and apoptosis, suggesting that this plant may contain potential anti-cancer agents for single or combinatory cancer therapy against breast cancer

    Divergent Regulation of Actin Dynamics and Megakaryoblastic Leukemia-1 and -2 (Mkl1/2) by cAMP in Endothelial and Smooth Muscle Cells.

    Get PDF
    Proliferation and migration of vascular smooth muscle cells (VSMCs) or endothelial cell (ECs) promote or inhibit, respectively, restenosis after angioplasty, vein graft intimal thickening and atherogenesis. Here we investigated the effects of cAMP-induced cytoskeletal remodelling on the serum response factor (SRF) co-factors Megakaryoblastic Leukemia-1 and -2 (MKL1 and MKL2) and their role in controlling VSMC and EC proliferation and migration. Elevation of cAMP using forskolin, dibutyryl-cAMP (db-cAMP), BAY60-6583 or Cicaprost induced rapid cytoskeleton remodelling and inhibited proliferation and migration in VSMCs but not EC. Furthermore, elevated cAMP inhibited mitogen-induced nuclear-translocation of MKL1 and MKL2 in VSMCs but not ECs. Forskolin also significantly inhibited serum response factor (SRF)-dependent reporter gene (SRE-LUC) activity and mRNA expression of pro-proliferative and pro-migratory MKL1/2 target genes in VSMCs but not in ECs. In ECs, MKL1 was constitutively nuclear and MKL2 cytoplasmic, irrespective of mitogens or cAMP. Pharmacological or siRNA inhibition of MKL1 significantly inhibited the proliferation and migration of VSMC and EC. Our new data identifies and important contribution of MKL1/2 to explaining the strikingly different response of VSMCs and ECs to cAMP elevation. Elucidation of these pathways promises to identify targets for specific inhibition of VSMC migration and proliferation
    • …
    corecore