195 research outputs found

    Enhancing operational performance of AHUs through an advanced fault detection and diagnosis process based on temporal association and decision rules

    Get PDF
    The pervasive monitoring of HVAC systems through Building Energy Management Systems (BEMSs) is enabling the full exploitation of data-driven based methodologies for performing advanced energy management strategies. In this context, the implementation of Automated Fault Detection and Diagnosis (AFDD) based on collected operational data of Air Handling Units (AHUs) proved to be particularly effective to prevent anomalous running modes which can lead to significant energy waste over time and discomfort conditions in the built environment. The present work proposes a novel methodology for performing AFDD, based on both unsupervised and supervised data-driven methods tailored according to the operation of an AHU during transient and non-transient periods. The whole process is developed and tested on a sample of real data gathered from monitoring campaigns on two identical AHUs in the framework of the Research Project ASHRAE RP-1312. During the start-up period of operation, the methodology exploits Temporal Association Rules Mining (TARM) algorithm for an early detection of faults, while during non-transient period a number of classification models are developed for the identification of the deviation from the normal operation. The proposed methodology, conceived for quasi real-time implementation, proved to be capable of robustly and promptly identifying the presence of typical faults in AHUs

    CLU "in and out": looking for a link.

    Get PDF
    Cancer cells need to interact synergistically with their surrounding microenvironment to form a neoplasm and to progress further to colonize distant organs. The microenvironment can exert profound epigenetic effects on cells through cell-derived interactions between cells, or through cell-derived factors deposited into the microenvironment. Tumor progression implies immune-escaping and triggers several processes that synergistically induce a cooperation among transformed and stromal cells, that compete for space and resources such as oxygen and nutrients. Therefore, the extra cellular milieu and tissue microenvironment heterotypic interactions cooperate to promote tumor growth, angiogenesis, and cancer cell motility, through elevated secretion of pleiotropic cytokines and soluble factors. Clusterin (CLU), widely viewed as an enigmatic protein represents one of the numerous cellular factors sharing the intracellular information with the microenvironment and it has also a systemic diffusion, tightly joining the "In and the Out" of the cell with a still debated variety of antagonistic functions. The multiplicity of names for CLU is an indication of the complexity of the problem and could reflect, on one hand its multifunctionality, or alternatively could mask a commonality of function. The posited role for CLU, further supported as a cytoprotective prosurvival chaperone-like molecule, seems compelling, in contrast its tumor suppressor function, as a guide of the guardians of the genome (DNA-repair proteins Ku70/80, Bax cell death inducer), could really reflect the balanced expression of its different forms, most certainly depending on the intra- and extracellular microenvironment cross talk. The complicated balance of cytokines network and the regulation of CLU forms production in cancer and stromal cells undoubtedly represent a potential link among adaptative responses, genomic stability, and bystander effect after oxidative stresses and damage. This review focuses on the tumor-microenvironment interactions strictly involved in controlling local cancer growth, invasion, and distant metastases that play a decisive role in the regulation of CLU different forms expression and release. In addition, we focus on the pleiotropic action of the extracellular form of this protein, sCLU, that may play a crucial role in redirecting stromal changes, altering intercellular communications binding cell surface receptors and contributing to influence the secretion of chemokines in paracrine and autocrine fashion. Further elucidation of CLU functions inside and outside ("in and out") of cancer cell are warranted for a deeper understanding of the interplay between tumor and stroma, suggesting new therapeutic cotargeting strategies

    CLU "in and out": looking for a link

    Get PDF
    Cancer cells need to interact synergistically with their surrounding microenvironment to form a neoplasm and to progress further to colonize distant organs. The microenvironment can exert profound epigenetic effects on cells through cell-derived interactions between cells, or through cell-derived factors deposited into the microenvironment. Tumor progression implies immune-escaping and triggers several processes that synergistically induce a cooperation among transformed and stromal cells, that compete for space and resources such as oxygen and nutrients. Therefore, the extra cellular milieu and tissue microenvironment heterotypic interactions cooperate to promote tumor growth, angiogenesis, and cancer cell motility, through elevated secretion of pleiotropic cytokines and soluble factors. Clusterin (CLU), widely viewed as an enigmatic protein represents one of the numerous cellular factors sharing the intracellular information with the microenvironment and it has also a systemic diffusion, tightly joining the "In and the Out" of the cell with a still debated variety of antagonistic functions. The multiplicity of names for CLU is an indication of the complexity of the problem and could reflect, on one hand its multifunctionality, or alternatively could mask a commonality of function. The posited role for CLU, further supported as a cytoprotective prosurvival chaperone-like molecule, seems compelling, in contrast its tumor suppressor function, as a guide of the guardians of the genome (DNA-repair proteins Ku70/80, Bax cell death inducer), could really reflect the balanced expression of its different forms, most certainly depending on the intra- and extracellular microenvironment cross talk. The complicated balance of cytokines network and the regulation of CLU forms production in cancer and stromal cells undoubtedly represent a potential link among adaptative responses, genomic stability, and bystander effect after oxidative stresses and damage. This review focuses on the tumor-microenvironment interactions strictly involved in controlling local cancer growth, invasion, and distant metastases that play a decisive role in the regulation of CLU different forms expression and release. In addition, we focus on the pleiotropic action of the extracellular form of this protein, sCLU, that may play a crucial role in redirecting stromal changes, altering intercellular communications binding cell surface receptors and contributing to influence the secretion of chemokines in paracrine and autocrine fashion. Further elucidation of CLU functions inside and outside ("in and out") of cancer cell are warranted for a deeper understanding of the interplay between tumor and stroma, suggesting new therapeutic cotargeting strategies

    In Vitro Comparative Biocompatibility Testing of Carbofilm Coated and Uncoated Polyetherimide for Cardiovascular Application

    Get PDF
    When blood contacts the surface of a material, several processes take place including the activation of coagulation and immune systems. The aim of this work is to study in vitro the biological reactions seen from the point of view of hemocompatibility and cytocompatibility of a new polymer suggested as an artificial surface for cardiovascular applications: Carbofilm® coated polyetherimide (C®PEI) in comparison to polyetherimide (PEI), the uncoated form. PEI and C®PEI showed no signs of acute cytotoxicity although following long term incubation with PEI cytotoxicity was somewhat increased; both materials supported good endothelial cell adhesion with a higher level of cell proliferation on the coated form. No significant difference was detected in the activation of the inflammatory response and in thrombogenicity tested by assay of prostaglandin E2 (PGE2) and tromboxane B2 (TXB2) respectively, following incubation of the biomaterials with platelet-rich plasma (PRP). Complement activation assessed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE)/Western Blot analysis of both contacting plasma and protein which adsorbed on the surface of the polymers showed both materials to be activators of complement. In conclusion, Carbofilm® coating, showing lower cytotoxic activity and higher endothelial cell growth in comparison with uncoated material, seems to increase PEI compatibility

    Carnitine palmitoyltransferase I in human carcinomas: a novel role in histone deacetylation?

    Get PDF
    Carnitine palmitoyl transferase I (CPT1) catalyzes the transport of long-chain fatty acids into mitochondria for beta-oxidation. A link between CPT1 and apoptosis has been suggested on the basis of several experimental data. Nevertheless, results are contradictory about the effective role of CPT1 in cell survival control and cancer development. Conversely, Fatty acid synthase (FAS) enzyme, required for the synthesis of fatty acids, is found over-expressed in tumors and inhibition of FAS triggers apoptosis in human cancer cells. We have studied the tumor-specific modulation of CPT1 and FAS in human colorectal cancer (n = 11) and breast carcinomas (n = 24). CPT1 was significantly decreased in the cytoplasm of tumoral samples (p < or = 0.04), whereas FAS was increased (p < or = 0.04). A striking CPT1 nuclear localization was evident in the tumors (p < or = 0.04). In the nuclear environment the protein would modulate the levels of acetyl/acyl-CoA implicated in the regulation of gene transcription. At this purpose, we performed in vitro experiments using epithelial neoplastic (MCF-7, Caco-2, HepG2 cells) and non neoplastic cell lines (MCF-12F) confirming a nuclear localization of CPT1 protein exclusively in neoplastic cells. Moreover histone deacetylase (HDAC) activity showed significantly higher levels in nuclear extracts from neoplastic than from control cells. HDAC1 and CPT1 proteins coimmunoprecipitated in nuclear extracts from MCF-7 cells. The treatment with HDAC inhibitors such as trichostatin A and butyrate significantly decreased nuclear expression of CPT1 and its bond to HDAC1. We also identified the existence of CPT1A mRNA transcript variant 2 in MCF-7, beside to the classic isoform 1. The peculiar localization of CPT1 in the nuclei of human carcinomas and the disclosed functional link between nuclear CPT1 and HDAC1 propose a new role of CPT1 in the histonic acetylation level of tumors

    A data-driven energy platform: from energy performance certificates to human-readable knowledge through dynamic high-resolution geospatial maps

    Get PDF
    The energy performance certificate (EPC) is a document that certifies the average annual energy consumption of a building in standard conditions and allows it to be classified within a so-called energy class. In a period such as this, when greenhouse gas emissions are of considerable importance and where the objective is to improve energy security and reduce energy costs in our cities, energy certification has a key role to play. The proposed work aims to model and characterize residential buildings’ energy efficiency by exploring heterogeneous, geo-referenced data with different spatial and temporal granularity. The paper presents TUCANA (TUrin Certificates ANAlysis), an innovative data mining engine able to cover the whole analytics workflow for the analysis of the energy performance certificates, including cluster analysis and a model generalization step based on a novel spatial constrained K-NN, able to automatically characterize a broad set of buildings distributed across a major city and predict different energy-related features for new unseen buildings. The energy certificates analyzed in this work have been issued by the Piedmont Region (a northwest region of Italy) through open data. The results obtained on a large dataset are displayed in novel, dynamic, and interactive geospatial maps that can be consulted on a web application integrated into the system. The visualization tool provides transparent and human-readable knowledge to various stakeholders, thus supporting the decision-making process

    The expression and the nuclear activity of the caretaker gene Ku86 are modulated by somatostatin

    Get PDF
    Somatostatin is a peptide hormone that exerts antisecretory and antiproliferative activities on some human tumors. The Ku70/86 heterodimer acts as regulatory subunit of the DNA dependent protein kinase and its DNA binding activity mediates DNA double strands breaks repair that is crucial to maintain the genetic integrity of the genome. The activation of the heterodimer regulates cell cycle progression and the activity of nuclear transcription factors involved in DNA replication and cell proliferation. Moreover Ku86 behaves as a receptor for the growth inhibitory tetradecapeptide, somatostatin. Herein we report that somatostatin treatment to a colon carcinoma cell line (Caco-2) inhibits cell growth and, at same time, strongly modulates the activation of Ku70/86 heterodimer and the levels of Ku86 in the nucleus by increasing its specific mRNA level. Our findings are consistent with the hypothesis that somatostatin controls cell cycle progression and DNA repair through a new signalling pathway that involves the regulation of Ku86 level and modulates the Ku70/86 activity in the nucleus

    Investigating the Origin of Mycobacterium chimaera Contamination in Heater-Cooler Units: Integrated Analysis with Fourier Transform Infrared Spectroscopy and Whole-Genome Sequencing

    Get PDF
    Mycobacterium chimaera is ubiquitously spread in the environment, including factory and hospital water systems. Invasive cases of M. chimaera infection have been associated with aerosols produced by the use of heater-cooler units (HCU) during cardiac surgery. The aim of this study was to evaluate for the first time the performance of IR-Biotyper system on a large number of M. chimaera isolates collected from longitudinal environmental HCUs samples and water sources from hospitals located in three Italian provinces. In addition, IR-Biotyper results were compared with whole-genome sequencing (WGS) analysis, the reference method for molecular epidemiology, to investigate the origin of M. chimaera contamination of HCUs. From November 2018 to May 2021, 417 water samples from 52 HCUs (Stockert 3T, n = 41 and HCU40, n = 11) and 23 hospital taps (used to fill the HCU tanks) were concentrated, decontaminated, and cultured for M. chimaera. Positive cultures (n = 53) were purified by agar plate subcultures and analyzed by IR-Biotyper platform and Ion Torrent sequencing system. IR-Biotyper spectra results were analyzed using a statistical approach of dimensionality reduction by linear discriminant analysis (LDA), generating three separate clusters of M. chimaera, ascribable to each hospital. Furthermore, the only M. chimaera-positive sample from tap water clustered with the isolates from the HCUs of the same hospital, confirming that the plumbing system could represent the source of HCU contamination and, potentially, of patient infection. According to the genome-based phylogenies and following the classification proposed by van Ingen and collaborators in 2017, three distinct M. chimaera groups appear to have contaminated the HCU water systems: subgroups 1.1, 2.1, and branch 2. Most of the strains isolated from HCUs at the same hospital share a highly similar genetic profile. The nonrandom distribution obtained with WGS and IR-Biotyper leads to the hypothesis that M. chimaera subtypes circulating in the local plumbing colonize HCUs through the absolute filter, in addition with the current hypothesis that contamination occurs at the HCU production site. This opens the possibility that other medical equipment, such as endoscope reprocessing device or hemodialysis systems, could be contaminated by M. chimaera. IMPORTANCE Our manuscript focuses on interventions to reduce waterborne disease transmission, improve sanitation, and control infection. Sanitary water can be contaminated by nontuberculous Mycobacteria, including M. chimaera, a causative agent of invasive infections in immunocompromised patients. We found highly similar genetic and phenotypic profiles of M. chimaera isolated from heater-cooler units (HCU) used during surgery to thermo-regulate patients' body temperature, and from the same hospital tap water. These results lead to the hypothesis that M. chimaera subtypes circulating in the local plumbing colonize HCUs through the absolute filter, adding to the current hypothesis that contamination occurs at the HCU production site. In addition, this opens the possibility that other medical equipment using sanitized water, such as endoscope reprocessing devices or hemodialysis systems, could be contaminated by nontuberculous Mycobacteria, suggesting the need for environmental surveillance and associated control measures

    Transcriptional control by adenovirus E1A conserved region 3 via p300/CBP

    Get PDF
    The human adenovirus type 5 (HAdV-5) E1A 13S oncoprotein is a potent regulator of gene expression and is used extensively as a model for transcriptional activation. It possesses two independent transcriptional activation domains located in the N-terminus/conserved region (CR) 1 and CR3. The protein acetyltransferase p300 was previously identified by its association with the N-terminus/CR1 portion of E1A and this association is required for oncogenic transformation by E1A. We report here that transcriptional activation by 13S E1A is inhibited by co-expression of sub-stoichiometric amounts of the smaller 12S E1A isoform, which lacks CR3. Transcriptional inhibition by E1A 12S maps to the N-terminus and correlates with the ability to bind p300/CBP, suggesting that E1A 12S is sequestering this limiting factor from 13S E1A. This is supported by the observation that the repressive effect of E1A 12S is reversed by expression of exogenous p300 or CBP, but not by a CBP mutant lacking actyltransferase activity. Furthermore, we show that transcriptional activation by 13S E1A is greatly reduced by siRNA knockdown of p300 and that CR3 binds p300 independently of the well-characterized N-terminal/CR1-binding site. Importantly, CR3 is also required to recruit p300 to the adenovirus E4 promoter during infection. These results identify a new functionally significant interaction between E1A CR3 and the p300/CBP acetyltransferases, expanding our understanding of the mechanism by which this potent transcriptional activator functions

    Congenital cytomegalovirus infection: the state of the art and future perspectives

    Get PDF
    Congenital cytomegalovirus (cCMV) infection is the most common congenital infection, with an estimated incidence of approximately one in 200 infants in high-income settings. Approximately one in four children may experience life-long consequences, including sensorineural hearing loss and neurodisability. Knowledge regarding prevention, diagnosis, and treatment increased in the recent years, but some challenges remain. In this review, we tried to summarize the current knowledge on both the obstetrical and pediatric areas, while also highlighting controversial aspects and future perspectives. There is a need to enhance awareness among the general population and pregnant women through specific information programs. Further research is needed to better define the classification of individuals at birth and to have a deeper understanding of the long-term outcomes for so defined children. Finally, the availability of valaciclovir medication throughout pregnancy, where appropriate, has prompted the assessment of a universal serological antenatal screening. It is recommended to establish a dedicated unit for better evaluation and management of both mothers and children
    corecore