5,691 research outputs found

    Preface: The trajectory from volume to journal

    Get PDF

    Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration

    Get PDF
    Adult skeletal muscle has the remarkable property of regenerating after damage, owing to satellite cells and myogenic precursor cells becoming committed to adult myogenesis to rebuild the muscle. This process is accompanied by the continuing presence of macrophages, from the phagocytosis of damaged myofibres to the full re-formation of new myofibres. In recent years, there has been huge progress in our understanding of the roles of macrophages during skeletal muscle regeneration, notably concerning their effects on myogenic precursor cells. Here, we review the most recent knowledge acquired on monocyte entry into damaged muscle, the various macrophage subpopulations, and their respective roles during the sequential phases of muscle repair. We also discuss the role of macrophages after exercise-induced muscle damage, notably in humans. Skeletal muscle regenerates after injury thanks to myogenic precursor cells. Macrophages are continuously present during muscle regeneration. While in resting muscle, macrophages are located in the epimysium, they infiltrate the parenchyma after muscle injury. A sequence of pro-inflammatory then anti-inflammatory macrophages accompanies muscle regeneration, each subset of macrophages providing specific cues to myogenic cells for proliferation then differentiation. \ua9 2013 The Authors Journal compilation \ua9 2013 FEBS

    Synthesis, crystallographic characterization, and mechanical behavior of alumina chromia alloys

    Get PDF
    Powder mixtures of Alumina and Chromia, blended in different proportions (1, 3, 5 and 10%wt) by attrition milling, were fired either by pressureless sintering in air and hot pressing under vacuum. The resulting materials, characterized by X-ray diffraction, Raman spectroscopy, SEM, hardness and fracture toughness showed that all the compositions form complete solid solution which maintain the same crystal structures of corundum; chromia addition retards materials' densification of pressureless fired samples but not that of hot-pressed samples. Data from Raman spectroscopy and SEM/EDXS showed the appearance of Ti- and Mn-based impurities near the indentation print, in particular on fractured grains. The addition of chromia improves hardness, but does not affect toughness which is, on the other hand, greatly influenced by materials\u2019 residual porosity

    Convolutional LSTM Networks for Subcellular Localization of Proteins

    Get PDF
    Machine learning is widely used to analyze biological sequence data. Non-sequential models such as SVMs or feed-forward neural networks are often used although they have no natural way of handling sequences of varying length. Recurrent neural networks such as the long short term memory (LSTM) model on the other hand are designed to handle sequences. In this study we demonstrate that LSTM networks predict the subcellular location of proteins given only the protein sequence with high accuracy (0.902) outperforming current state of the art algorithms. We further improve the performance by introducing convolutional filters and experiment with an attention mechanism which lets the LSTM focus on specific parts of the protein. Lastly we introduce new visualizations of both the convolutional filters and the attention mechanisms and show how they can be used to extract biological relevant knowledge from the LSTM networks

    AML Modeling of Trust in Supply Chain Management

    Get PDF
    Agent Modeling Language (AML) is a semiformal visual modeling language for specifying, modeling and documenting systems in terms of concepts drawn from Multi Agent Modeling (MAS) theory. Supply chain management (SCM) is the management of network of interconnected business which spans all movements of services and goods from the point of origin to the point of consumption. In SCM, Trust modeling is an important and crucial aspect from the perspective of sustainability of the supply chain and efficient performance in business. In the supply chain, the more we trust, the more we exchange information on demand and on forecast of the last customer so as with the level of stock and on the forecast of the suppliers. In this work, we attempted to model the Trust in SCM using AML and proposed a MAS SCM model of trust in supply chain management. The proposed model is implemented using JADE and the simulation results demonstrated the impact of trust in supply chain along with the evolution of trust

    Transport and Magnetic Properties of R1-xAxCoO3 (R=La, Pr and Nd; A=Ba, Sr and Ca)

    Full text link
    Transport and magnetic measurements have been carried out on perovskite Co-oxides R1-xAxCoO3 (R=La, Pr, and Nd; A=Ba, Sr and Ca; 0<x<0.5: All sets of the R and A species except Nd1-xBaxCoO3 have been studied.). With increasing the Sr- or Ba-concentration x, the system becomes metallic ferromagnet with rather large magnetic moments. For R=Pr and Nd and A=Ca, the system approaches the metal- insulator phase boundary but does not become metallic. The magnetic moments of the Ca-doped systems measured with the magnetic field H=0.1 T are much smaller than those of the Ba- and Sr-doped systems. The thermoelectric powers of the Ba- and Sr-doped systems decrease from large positive values of lightly doped samples to negative ones with increasing doping level, while those of Ca-doped systems remain positive. These results can be understood by considering the relationship between the average ionic radius of R1-xAx and the energy difference between the low spin and intermediate spin states. We have found the resistivity-anomaly in the measurements of Pr1-xCaxCoO3 under pressure in the wide region of x, which indicates the existence of a phase transition different from the one reported in the very restricted region of x~0.5 at ambient pressure [Tsubouchi et al. Phys. Rev. B 66 (2002) 052418.]. No indication of this kind of transition has been observed in other species of R.Comment: 9 pages, 8 figures. J. Phys. Soc. Jpn. 72 (2003) No.

    Crystallographic structure of ultrathin Fe films on Cu(100)

    Full text link
    We report bcc-like crystal structures in 2-4 ML Fe films grown on fcc Cu(100) using scanning tunneling microscopy. The local bcc structure provides a straightforward explanation for their frequently reported outstanding magnetic properties, i.e., ferromagnetic ordering in all layers with a Curie temperature above 300 K. The non-pseudomorphic structure, which becomes pseudomorphic above 4 ML film thickness is unexpected in terms of conventional rules of thin film growth and stresses the importance of finite thickness effects in ferromagnetic ultrathin films.Comment: 4 pages, 3 figures, RevTeX/LaTeX2.0

    The use of ALD and PVD coatings as defect sealants to increase the corrosion resistance of thermal spray coatings

    Get PDF
    Thermal spray coatings are widely used to improve the surface properties of materials, in particular the wear and oxidation resistance. Nevertheless, the corrosion resistance is slightly increased due to the fact that this type of coatings present some internal defects (pores, cracks) that allow the corrosive media to penetrate up to the substrate, that undergoes to corrosion degradation. The amount of these defects is strongly influenced by both the deposition technique and the material deposited. The aim of this work is to seal the internal porosities of the thermal spray coatings by the use of both PVD and ALD coatings or the combination of the two. The thermal spray coating analysed in this work is a pure alumina coating, deposited by Air Plasma Spray (APS) technique, that has been sealed with CrN coating, deposited by PVD (Physical Vapour Deposition) technique, and/or TiO2 coatings, deposited by ALD (Atomic Layer Deposition). The substrate used is a common medium C steel. The samples were then characterized in order to determine the microstructure (SEM+EDXS, light microscope) and the chemical composition (Rf-GDOES elemental profiling), that is important to determine the depth of penetration of the PVD and/or ALD coating inside the thermal spray deposit. Afterwards, a detailed electrochemical characterization in 3,5wt% NaCl aqueous solution was performed to verify the efficiency of the sealant treatment. In detail, a monitor in function of the time of the OCP potential was performed up to 24h of immersion time. In addition, potentiodynamic tests were performed using a 3 electrode electrochemical cell (CE: Pt wire, RE: Ag/AgCl). The same tests were then performed on the same samples that present an artificial defect produced by Rf-GDOES. The main goal of these tests is to determine the maximum depth of a defect that can allow the corrosive media to penetrate the thermal spray coating. Preliminary results showed that the use of PVD and ALD coatings as sealants can reduce the permeation of the corrosive media on the substrate

    Dark Current Random Telegraph Signals in Solid-State Image Sensors

    Get PDF
    This paper focuses on the Dark Current-Random Telegraph Signal (DC-RTS) in solid-state image sensors. The DCRTS is investigated in several bulk materials, for different surface interfaces and for different trench isolation interfaces. The main parameter used to characterize the DC-RTS is the transition maximum amplitude which seems to be the most appropriate for studying the phenomenon and identifying its origin. Proton, neutron and Co-60 Gamma-ray irradiations are used to study DC-RTS induced by both Total Ionizing Dose (TID) and Displacement damage (Dd) dose. Conclusions are drawn by analyzing the correlation between the exponential slope of the transition maximum amplitude histogram and the location of the DC-RTS-induced defects. The presented results can be extrapolated to predict DC-RTS distributions in various kinds of solid state image sensors
    corecore