418 research outputs found
A Universal Law for Solar-Wind Turbulence at Electron Scales
The interplanetary magnetic fluctuation spectrum obeys a Kolmogorovian power
law at scales above the proton inertial length and gyroradius which is well
regarded as an inertial range. Below these scales a power law index around
is often measured and associated to nonlinear dispersive processes.
Recent observations reveal a third region at scales below the electron inertial
length. This region is characterized by a steeper spectrum that some refer to
it as the dissipation range. We investigate this range of scales in the
electron magnetohydrodynamic approximation and derive an exact and universal
law for a third-order structure function. This law can predict a magnetic
fluctuation spectrum with an index of which is in agreement with the
observed spectrum at the smallest scales. We conclude on the possible existence
of a third turbulence regime in the solar wind instead of a dissipation range
as recently postulated.Comment: 11 pages, will appear in Astrophys.
Towards an Ontological Modelling of Preference Relations
Preference relations are intensively studied in Economics,
but they are also approached in AI, Knowledge Representation, and
Conceptual Modelling, as they provide a key concept in a variety of
domains of application. In this paper, we propose an ontological foundation
of preference relations to formalise their essential aspects across
domains. Firstly, we shall discuss what is the ontological status of the
relata of a preference relation. Secondly, we investigate the place of preference
relations within a rich taxonomy of relations (e.g. we ask whether
they are internal or external, essential or contingent, descriptive or nondescriptive
relations). Finally, we provide an ontological modelling of
preference relation as a module of a foundational (or upper) ontology
(viz. OntoUML).
The aim of this paper is to provide a sharable foundational theory of
preference relation that foster interoperability across the heterogeneous
domains of application of preference relations
Electron and proton heating by solar wind turbulence
Previous formulations of heating and transport associated with strong
magnetohydrodynamic (MHD) turbulence are generalized to incorporate separate
internal energy equations for electrons and protons. Electron heat conduction
is included. Energy is supplied by turbulent heating that affects both
electrons and protons, and is exchanged between them via collisions. Comparison
to available Ulysses data shows that a reasonable accounting for the data is
provided when (i) the energy exchange timescale is very long and (ii) the
deposition of heat due to turbulence is divided, with 60% going to proton
heating and 40% into electron heating. Heat conduction, determined here by an
empirical fit, plays a major role in describing the electron data
Substitution in a sense
The Reference Principle (RP) states that co-referring expressions are everywhere intersubstitutable salva congruitate. On first glance, (RP) looks like a truism, but a truism with some bite: (RP) transforms difficult philosophical questions about co-reference into easy grammatical questions about substitutability. This has led a number of philosophers to think that we can use (RP) to make short work of certain longstanding metaphysical debates. For example, it has been suggested that all we need to do to show that the predicate ‘( ) is a horse’ does not refer to a property is point out that ‘( ) is a horse’ and ‘the property of being a horse’ are not everywhere intersubstitutable salva congruitate. However, when we understand ‘substitution’ in the simplest and most straightforward way, (RP) is no truism; in fact, natural languages are full of counterexamples to the principle. In this paper, I introduce a new notion of substitution, and then develop and argue for a version of (RP) that is immune to these counterexamples. Along the way I touch on the following topics: the relation between argument forms and their natural language instances; the reification of sense; the difference between terms and predicates; and the relation between reference and disquotation. I end by arguing that my new version of (RP) cannot be used to settle metaphysical debates quite as easily as some philosophers would like
Roles of Fast-Cyclotron and Alfven-Cyclotron Waves for the Multi-Ion Solar Wind
Using linear Vlasov theory of plasma waves and quasi-linear theory of
resonant wave-particle interaction, the dispersion relations and the
electromagnetic field fluctuations of fast and Alfven waves are studied for a
low-beta multi-ion plasma in the inner corona. Their probable roles in heating
and accelerating the solar wind via Landau and cyclotron resonances are
quantified. We assume that (1) low-frequency Alfven and fast waves have the
same spectral shape and the same amplitude of power spectral density; (2) these
waves eventually reach ion cyclotron frequencies due to a turbulence cascade;
(3) kinetic wave-particle interaction powers the solar wind. The existence of
alpha particles in a dominant proton/electron plasma can trigger linear mode
conversion between oblique fast-whistler and hybrid alpha-proton cyclotron
waves. The fast-cyclotron waves undergo both alpha and proton cyclotron
resonances. The alpha cyclotron resonance in fast-cyclotron waves is much
stronger than that in Alfven-cyclotron waves. For alpha cyclotron resonance, an
oblique fast-cyclotron wave has a larger left-handed electric field
fluctuation, a smaller wave number, a larger local wave amplitude, and a
greater energization capability than a corresponding Alfven-cyclotron wave at
the same wave propagation angle \theta, particularly at < \theta <
. When Alfven-cyclotron or fast-cyclotron waves are present, alpha
particles are the chief energy recipient. The transition of preferential
energization from alpha particles to protons may be self-modulated by
differential speed and temperature anisotropy of alpha particles via the
self-consistently evolving wave-particle interaction. Therefore, fast-cyclotron
waves as a result of linear mode coupling is a potentially important mechanism
for preferential energization of minor ions in the main acceleration region of
the solar wind.Comment: 29 pages, 10 figures, 3 tables. Accepted for publication in Solar
Physic
Trends in oral anticoagulant prescriptions and major bleeding complications: A comparison of NHS CCG prescription data with cases from a prospective study (ORANGE) between October 2013 and June 2015
Spectropolarimetric Fluctuations in a Sunspot Chromosphere
The instrumental advances made in this new era of 4-meter class solar
telescopes with unmatched spectropolarimetric accuracy and sensitivity, will
enable the study of chromospheric magnetic fields and their dynamics with
unprecedented detail. In this regard, spectropolarimetric diagnostics can
provide invaluable insight into magneto-hydrodynamic (MHD) wave processes. MHD
waves and, in particular, Alfv\'enic fluctuations associated to particular wave
modes, were recently recognized as important mechanisms not only for the
heating of the outer layers of the Sun's atmosphere and the acceleration of the
solar wind, but also for the elemental abundance anomaly observed in the corona
of the Sun and other Sun-like stars (also known as first ionisation potential;
FIP) effect. Here, we take advantage of state-of-the-art and unique
spectropolarimetric IBIS observations to investigate the relation between
intensity and circular polarisation (CP) fluctuations in a sunspot
chromosphere. Our results show a clear link between the intensity and CP
fluctuations in a patch which corresponds to a narrow range of magnetic field
inclinations. This suggests the presence of Alfv\'enic perturbations in the
sunspot.Comment: 15 pages, 5 figures. Accepted for publication in Philosophical
Transactions of the Royal Society
- …
